(1)过点O作OG⊥ND于点G ∴∠OGD=90°, ∵四边形ABCD是矩形, ∴∠C=90°, 由翻折得 ∠N=∠C=90°=∠OGD, ∴OG∥BN, ∵∠AMB=60°, ∴∠BMD=120°, 易证:△ABM≌△NDM, ∴MB=MD, ∴∠NBD=30°, ∴∠GOD=30°, 在Rt△OGD中,cos30°=,OD=3, ∴OG=(cm)
(2)相切. 证明:连接OA交BN与H, ∵∠DBN=30°, 由翻折得∠DBC=∠DBN=30°. ∵∠ABC=90°, ∴∠ABO=60°, ∵OA=OB, ∴△ABO是等边三角形. ∴∠AOB=60°, ∴∠BHO=90°, 又∵EF∥BN, ∴∠FAH=90°, ∴OA⊥EF. ∴EF与⊙O相切.
|