如图,ABCD是⊙O的内接四边形,AB是⊙O的直径,过点D的切线交BA的延长线于点E,若∠ADE=25°,则∠C=______度.

如图,ABCD是⊙O的内接四边形,AB是⊙O的直径,过点D的切线交BA的延长线于点E,若∠ADE=25°,则∠C=______度.

题型:不详难度:来源:
如图,ABCD是⊙O的内接四边形,AB是⊙O的直径,过点D的切线交BA的延长线于点E,若∠ADE=25°,则∠C=______度.
答案
连接OD,
∵过点D的切线交BA的延长线于点E,
∴OD⊥DE,
∴∠ADO=90°-∠ADE=65°;
∵OA=OD,
∴∠OAD=∠ADO=65°,
∴∠C=115°.
举一反三
将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于______.(结果保留根号)
题型:不详难度:| 查看答案
如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为(  )
A.6


2
mm
B.12mmC.6


3
mm
D.4


3
mm

题型:不详难度:| 查看答案
如图,△ABC中,E、F分别是AB、AC上的点.
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①②⇒③,①③⇒②,②③⇒①.
(1)试判断上述三个命题是否正确(直接作答);
(2)请证明你认为正确的命题.
题型:不详难度:| 查看答案
一个正方形和一个正六边形的外接圆半径相等,则此正方形与正六边形的面积之比为______.
题型:不详难度:| 查看答案
某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,
AD
=
BE
=
CF
,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)
(3)根据以上探索过程,提出你的猜想.(不必证明)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.