(1)观察发现: 如(a)图,若点A,B在直线l同侧,在直线l上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线l的对称点B",连接AB",与直线l的交点就是所求的点P.再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为______. (2)实践运用: 如(c)图,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是 | AD | 的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值. (3)拓展延伸: 如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.
|