阅读下列材料:                                        在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和

阅读下列材料:                                        在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和

题型:不详难度:来源:
阅读下列材料:                                        
在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和11个小正方形。为完成任务,小明先学习了两种简单的“基本分割法”。
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

学习了上述两种“基本分割法”后,小明很从容地就完成了分割的任务:
(1)把一个正方形分割成9个小正方形.
方法一:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成(个)小正方形.
方法二:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成(个)小正方形.
(2)把一个正方形分割成10个小正方形.
如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加个小正方形,从而分割成(个)小正方形.
请你参照上述分割方法解决下列问题(只要求画图,不用说明分割方法):
(1)请你替小明同学把图⑥给出的正方形分割成11个小正方形;
(2)仿照基本分割法1:请把图a中的正三角形分割成4个小正三角形;
(3)仿照基本分割法2:请把图b 中的正三角形分割成6个小正三角形;
(4)分别把图c和图d中的正三角形分割成9个和10个小正三角形.
答案
解:

解析
(3)按“基本分割2”进行两次即可;
(4)类比应用:
①基本分割法1即利用正三角形的3条中位线把一个正三角形分割成4个小正三角形;
②基本分割法2即作正三角形的一条中位线,将其分割成一个小正三角形和梯形,再利用梯形上底的中点和下底的三等分点,将梯形分割成5个正三角形,从而把一个正三角形分割成6个小正三角形;
③图c分别按基本分割1和基本分割2各进行一次即可;
图d分别按基本分割1进行3次即可;
图e分别按基本分割2进行2次即可;
④类比正方形的分割中的第(4)小题,即可作出答案:
通过“基本分割法1”、“基本分割法2”或其组合把一个正三角形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正三角形,从而把一个正三角形分割成12个、13个、14个小正方形,依次类推,即可把一个正三角形分割成n(n≥9)个小正三角形.
举一反三
如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,……,按照这样的规律排列下去,则第9个图形由_______个圆组成,第n个图形由________个圆组成。

题型:不详难度:| 查看答案
如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连结AF、BD.
(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;
(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.

题型:不详难度:| 查看答案
平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为【   】
A.(1,)B.( -1,)C.(0,2)D.(2,0)

题型:不详难度:| 查看答案
下列图形是中心对称图形的是【   】.
题型:不详难度:| 查看答案
如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上则∠C=
     度.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.