如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足为E.则结论:①AD=BF;②CF=CD;③AC+CD=A

如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足为E.则结论:①AD=BF;②CF=CD;③AC+CD=A

题型:不详难度:来源:
如图,在△ABC中,BC=AC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,垂足为E.则结论:①AD=BF;②CF=CD;③AC+CD=AB;④BE=CF;⑤BF=2BE
其中正确结论的个数是(  )
A.1B.2C.3D.4

答案
①∵BC=AC,∠ACB=90°,
∴∠CAB=∠ABC=45°,
∵AD平分∠BAC,
∴∠BAE=∠EAF=22.5°,
∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,
∴∠EAF=∠FBC,
∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,
∴Rt△ADC≌Rt△BFC,
∴AD=BF;
故①正确;
②∵①中Rt△ADC≌Rt△BFC,
∴CF=CD,
故②正确;
③∵①中Rt△ADC≌Rt△BFC,
∴CF=CD,AC+CD=AC+CF=AF,
∵∠CBF=∠EAF=22.5°,
∴在Rt△AEF中,∠F=90°-∠EAF=67.5°,
∵∠CAB=45°,
∴∠ABF=180°-∠F-∠CAB=180°-67.5°-45°=67.5°,
∴AF=AB,即AC+CD=AB,
故③正确;
④由③可知,△ABF是等腰三角形,
∵BE⊥AD,
∴BE=
1
2
BF,
∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,
故BE≠CF,
故④错误;
⑤由③可知,△ABF是等腰三角形,
∵BE⊥AD,
∴BF=2BE,
故⑤正确.
所以①②③⑤四项正确.
故选D.
举一反三
如图,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交AC于点E.求∠EBC的度数.
题型:不详难度:| 查看答案
到三角形三个顶点距离都相等的点是三角形(  )的交点.
A.三边中垂线B.三条中线
C.三条高D.三条内角平分线
题型:不详难度:| 查看答案
如图,已知:△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线交AB于E,交BC于F,DG为AC的垂直平分线,交AC于G,交BC于D,若BC=15cm,则DF长为______.
题型:不详难度:| 查看答案
如图,在△ABC中,∠C=90°,AB的垂直平分线交AC于D,垂足为E,若∠A=30°,DE=2cm,则CD=______cm.
题型:不详难度:| 查看答案
如图所示:DO是边AC的垂直平分线,交AB于点D,若AB=7cm,BC=5cm,则△BDC的周长是______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.