从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.
题型:不详难度:来源:
从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率: (1)抽取1名,恰好是男生; (2)抽取2名,恰好是1名女生和1名男生. |
答案
解:(1)∵有1名男生和2名女生, ∴抽取1名,恰好是男生的概率为:。 (2)画树状图得:
∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况, ∴抽取2名,恰好是1名女生和1名男生概率为:。 |
解析
列表法或树状图法,概率公式。 【分析】(1)由从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,故利用概率公式即可求得抽取1名,恰好是男生的概率。 (2)根据题意画出树状图或列表,然后由图表求得所有等可能的结果与抽取2名,恰好是1名女生和1名男生的情况,最后利用概率公式求解即可求得答案。 |
举一反三
如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是 ▲ |
已知(=1,2,,2012)满足, 使直线(=1,2,,2012)的图像经过一、二、四象限的概率是 ▲ |
如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同, 则两辆汽车经过该路口都向右转的概率为 ▲ . |
已知M(a,b)是平面直角坐标系xOy中的点,其中a是从l,2,3三个数中任取的一个数,b是从l,2,3,4四个数中任取的一个数.定义“点M(a,b)在直线x+y=n上”为事件 (2≤n≤7,n为整数),则当的概率最大时,n的所有可能的值为_ _ |
如图所给的A、B、C三个几何体中,按箭头所示的方向为它们的正面,设A、B、C三个几何体的主视图分别是A1、B1、C1;左视图分别是A2、B2、C2;俯视图分别是A3、B3、C3. (1)请你分别写出A1、A2、A3、B1、B2、B3、C1、C2、C3图形的名称; (2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A1、A2、A3的三张卡片放在甲口袋中,画有B1、B2、B3的三张卡片放在乙口袋中,画有C1、C2、C3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片. ① 通过画树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率; ② 小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么? |
最新试题
热门考点