(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等), ∴∠A+∠D=∠C+∠B;
(2)①线段AB、CD相交于点O,形成“8字形”; ②线段AN、CM相交于点O,形成“8字形”; ③线段AB、CP相交于点N,形成“8字形”; ④线段AB、CM相交于点O,形成“8字形”; ⑤线段AP、CD相交于点M,形成“8字形”; ⑥线段AN、CD相交于点O,形成“8字形”; 故“8字形”共有6个;
(3)∠DAP+∠D=∠P+∠DCP,① ∠PCB+∠B=∠PAB+∠P,② ∵∠DAB和∠BCD的平分线AP和CP相交于点P, ∴∠DAP=∠PAB,∠DCP=∠PCB, 由①+②得: ∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P, 即2∠P=∠D+∠B, 又∠D=40°,∠B=36°, ∴2∠P=40°+36°=76°, ∴∠P=38°. 故答案是:(1)∠A+∠D=∠C+∠B; (2)6. |