设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f"(x)满足0<f"(x)<1.” (1)判断函数f(x)=+是否是集合M中的元素,并说明理由; (2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f"(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根; (3)设是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2. |