(1)∵集合A={y|y2-(a2+a+1)y+a(a2+1)>0}={y|(y-a)(y-a2-1)>0}={y|y<a,或y>a2+1}, B={y|y=x2-x+,0≤x≤3}={y|y=(x-1)2+2,0≤x≤3}={y|2≤y≤4}. A∩B=∅, ∴a≤2 且 a2+1≥4,解得≤a≤2,故实数a的取值范围为[,2]. (2)当a取使不等式x2+1≥ax恒成立的最小值时,判别式△=a2-4≤0, 解得-2≤a≤2. 由(1)可得CRA={y|a≤y≤a2+1 },B={y|2≤y≤4}. 当 a2+1<2,即-1<a<1时,(CRA)∩B=∅. 当2≤a2+1≤4,即 1≤a≤ 或-≤a≤-1 时,(CRA)∩B=[2,a2+1]. 当a2+1>4时,即 2≥a> 或-2≤a<-时,(CRA)∩B=B=[2 4]. |