已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.如[-2.1]=-3,[-3]=-3,[2.5]=2.(1)判断f(x)的奇偶性;

已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.如[-2.1]=-3,[-3]=-3,[2.5]=2.(1)判断f(x)的奇偶性;

题型:解答题难度:一般来源:不详
已知:函数f(x)=[x[x]](x∈R),其中[x]表示不超过x的最大整数.
如[-2.1]=-3,[-3]=-3,[2.5]=2.
(1)判断f(x)的奇偶性;
(2)若x∈[-2,3],求f(x)的值域;
(3)若x∈[0,n](n∈N*),f(x)的值域为An,现将An,中的元素的个数记为an.试求an+1与an的关系,并进一步求出an的表达式.
答案
(1)∵f(
3
2
)=[
3
2
[
3
2
]]=[
3
2
•1]=[
3
2
]=1,
f(-
3
2
)=[-
3
2
[-
3
2
]]=[-
3
2
•(-2)]=[3]=3,
∴f(-
3
2
)≠f(
3
2
),f(-
3
2
)≠-f(
3
2
),故f(x)为非奇非偶函数.(4分)
(2)当-2≤x<-1时,[x]=-2,则2<x[x]≤4,∴f(x)可取2,3,4;
当-1≤x<0时,[x]=-1,则0<x[x]≤1,∴f(x)可取0,1;
当0≤x<1时,[x]=0,则x[x]=0,∴f(x)=0;
当1≤x<2时,[x]=1,则1≤x[x]<2,∴f(x)=1;
当2≤x<3时,[x]=2,则4≤x[x]<6,∴f(x)可取4,5;
又f(3)=[3[3]]=9,
故所求f(x)的值域为{0,1,2,3,4,5,9},(9分)
(3)当n<x<n+1时,[x]=n,则 n2<x[x]<n(n+1),
故f(x)可取n2,n2+1,n2+2,…,n2+n-1,
当x=n+1时,f(n+1)=(n+1)2
又当x∈[0,n]时,显然有f(x)≤n2
因此,可得an+1=an+n,又由(2)知,a1=2,
∴an=(a2-a1)+(a3-a2)+…+(an-an-1)+a1
=(2-1)+(3-1)+(4-1)+1…+(n-1)+2
=
(n-1)(1+n-1)
2
+2
=
n2-n+4
2
(14分)
举一反三
函数y=lg(|x|-1)的定义域是______.
题型:填空题难度:一般| 查看答案
已知函数y=


1+x
1-x
+lg(3-4x+x2)
的定义域为M.
(1)求M;
(2)当x∈M时,求f(x)=a•2x+2+3•4x(a>-3)的最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ln(ex+1)-ax(a>0).
(1)若函数y=f(x)的导函数是奇函数,求y=f′(x)的值域;
(2)求函数y=f(x)的单调区间.
题型:解答题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c(a,b,c∈R),当x∈(-∞,-2)∪(0,+∞)时,f(x)>0,当x∈(-2,0)时,f(x)<0,且对任意x∈R,不等式f(x)≥(a-1)x-1恒成立.
(I)求函数f(x)的解析式;
(II)设函数F(x)=tf(x)-x-3,其中t≥0,求F(x)在x∈[-
3
2
,2]
时的最大值H(t);
(III)在(II)的条件下,若关于的函数y=log2[p-H(t)]的图象与直线y=0无公共点,求实数的取值范围.
题型:解答题难度:一般| 查看答案
若|x(x-2)|>0,则y=
x2-3x+4
x
的取值范围是 ______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.