已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g

已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g

题型:解答题难度:一般来源:不详
已知定义域为R的函数y=f(x)和y=g(x),它们分别满足条件:对任意a,b∈R,都有f(a+b)=f(a)+f(b);对任意a,b∈R,都有g(a+b)=g(a)•g(b),且对任意x>0,g(x)>1.
(1)求f(0)、g(0)的值;
(2)证明函数y=f(x)是奇函数;
(3)证明x<0时,0<g(x)<1,且函数y=g(x)在R上是增函数;
(4)试各举出一个符合函数y=f(x)和y=g(x)的实例.
答案
(1)令a=b=0,则f(0)=f(0)+f(0)⇒f(0)=0
g(0)=g(0)•g(0)⇒g(0)=0或g(0)=1,
若g(0)=0,则g(x)=0,与条件矛盾.
故g(0)=1(也可令a=0,b=1,则不需要检验)
(2)f(x)的定义域为R,关于数0对称,
令a=x,b=-x,则f(-x)=-f(x).
故f(x)为奇函数.
(3)当x<0时,-x>0,g(-x)>1,
又g(x)•g(-x)=g(0)=1⇒0<g(x)<1
故∀x∈R,g(x)>0
证法一:设x1,x2为R上任意两个实数,且x1<x2
则x1-x2<0,g(x1-x2)<1g(x1)-g(x2
=g[(x1-x2)+x2]-g(x2)=[g(x1-x2)-1]•g(x2)<0.
故g(x)为R上的增函数.
证法二:设x1,x2为R上任意两个实数,且x1<x2
g(x1)
g(x2)
=
g[(x1-x2)+x2]
g(x2)
=g(x1-x2)<1

∴g(x)为R上的增函数.
(4)f(x)=2x;g(x)=2x
举一反三
函数f(x)=


1-x
+lg(x+2)
的定义域为 ______.
题型:填空题难度:一般| 查看答案
若χ∈(0,2π),则函数y=


sinx
+


-tanx
的定义域是(  )
A.{χ|0<χ<π}B.{χ|
π
2
<χ<π}
C.{χ|
2
<χ<2π}
D.{χ|
π
2
<χ≤π}
题型:单选题难度:简单| 查看答案
函数f(x)=
x+x3
1+8x2+x4
的最大值为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=(x2-3x+3)-ex定义域为[-2,t](t>-2),设f(-2)=m,f(t)=n.
(1)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数;
(2)求证:n>m;
(3)求证:对于任意的t>-2,总存在x0∈(-2,t),满足e=
c
a
=


2
2
,并确定这样的e2=
c2
a2
=
a2-b2
a2
=
1
2
的个数.
题型:解答题难度:一般| 查看答案
函数f(x)=
(x+1)0
|x|-x
的定义域为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.