已知集合M是满足下列性质函数的f(x)的全体,在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.(1)函数f(x)=1x,g(x)=x2是否属

已知集合M是满足下列性质函数的f(x)的全体,在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.(1)函数f(x)=1x,g(x)=x2是否属

题型:解答题难度:一般来源:不详
已知集合M是满足下列性质函数的f(x)的全体,在定义域D内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
,g(x)=x2是否属于集合M?分别说明理由.
(2)若函数f(x)=lg
a
x2+1
属于集合M,求实数a的取值范围.
答案
(1)对于函数f(x)=
1
x
,D=(-∞,0)∪(0,+∞),若f(x)∈M,
则存在非零实数x0,使得
1
x0+1
=
1
x0
+1,即x02+x0+1=0,显然此方程无实数解,
∴f(x)∉M;
函数g(x)=x2,D=R,若g(x)∈M成立,
则有(x0+1)2=x02+1,解得x0=0,
∴g(x)∈M;
(2)由条件得:D=R,a>0,由f(x)∈M知,
存在实数x0,使得lg
a
(x0+1)2+1
=lg
a
x02+1
+lg
a
2

a
(x0+1)2+1
=
a
x02+1
a
2

化简得:(a-2)x02+2ax0+2a-2=0,
当a=2时,x0=-
1
2
,符号题意;
当a≠2时,由△≥0得:4a2-4(a-2)(2a-2)≥0,
即3-


5
≤a≤3+


5
(a≠2),
综上所述,a的取值范围是[3-


5
,3+


5
].
举一反三
已知f(x+y)=f(x)+f(y),且f(1)=2,则f(1)+f(2)+…+f(n)不能等于(  )
A.f(1)+2f(1)+3f(1)+…+nf(1)B.f[
n(n+1)
2
]
C.n(n+1)D.n(n+1)f(1)
题型:单选题难度:简单| 查看答案
具有性质“对任意x,y∈R,满足f(x+y)=f(x)+f(y)”的函数f(x)是(  )
A.f(x)=πxB.f(x)=log0.6xC.f(x)=5xD.f(x)=cosx
题型:单选题难度:一般| 查看答案
当x在实数集R上任取值时,函数f(x)相应的值等于2x、2、-2x三个之中最大的那个值.
(1)求f(0)与f(3);
(2)画出f(x)的图象,写出f(x)的解析式;
(3)证明f(x)是偶函数;
(4)写出f(x)的值域.
题型:解答题难度:一般| 查看答案
已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2)
,且当x>1时f(x)<0.
(1)求f(1)的值
(2)判断f(x)的单调性
(3)若f(3)=-1,解不等式f(|x|)<2.
题型:解答题难度:一般| 查看答案
设函数g(x)=x2-2,f(x)=





g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
,则f(x)的值域是(  )
A.[-
9
4
,0]∪(1,+∞)
B.[0,+∞)C.[-
9
4
,0]
D.[-
9
4
,0]∪(2,+∞)
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.