已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.

已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.

题型:解答题难度:一般来源:不详
已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.
答案
解抽象函数的不等式,需知函数的单调性;
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
举一反三
定义在(0,+∞)的函数f(x),对于任意的a,b∈(0,+∞),都有f(ab)=f(a)+f(b)成立,当x>1时,f(x)<0.
(1)求证:1是函数f(x)的零点;
(2)判断f(x)在(0,+∞)上的单调性,并证明;
(3)若f(
1
4
)=
1
2
,解不等式f(mx+
1
16
)>1
(m>0).
题型:解答题难度:一般| 查看答案
已知函数f(x)定义域为(0,+∞),且满足f(4)=1,f(xy)=f(x)+f(y);
则(1 )f(1)=______; (2)f(
1
16
)=______.
题型:填空题难度:一般| 查看答案
设函数f(x)=





x
1
2
,(x>0)
(
1
2
)
x
-1,(x≤0)
,已知f(a)>1,则a的取值范围为(  )
A.(-1,1)B.(-∞,-1)∪(1,+∞)
C.(-∞,-2)∪(0,+°∞)D.(1,+∞)
题型:单选题难度:简单| 查看答案
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
题型:解答题难度:一般| 查看答案
某城市出租车,乘客上车后,行驶3km内收费都是10元,之后每行驶1km收费2元,超过15km,每行驶1km收费为3元(假设途中一路顺利,没有停车等候,).若乘客需要行驶20km,求
(I)付费总数y与行驶路程x收费之间的函数关系式;
(II)当出租车行驶了15km后,乘客是中途换乘一辆出租车还是继续乘坐这辆出租车行驶完余下的5km路程,哪一种方式更便宜?”
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.