某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价

某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价

题型:填空题难度:一般来源:浙江
某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:
答案
举一反三
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

高峰时间段用电价格表低谷时间段用电价格表
高峰月用电量
(单位:千瓦时)
高峰电价(单位:元/千瓦时)低谷月用电量
(单位:千瓦时)
低谷电价(单位:
元/千瓦时)
50及以下的部分0.56850及以下的部分0.288
超过50至200的部分0.598超过50至200的部分0.318
超过200的部分0.668超过200的部分0.388
高峰时间段用电的电费为 50×0.568+150×0.598=28.4+89.7=118.1 (元),
低谷时间段用电的电费为 50×0.288+50×0.318=14.4+15.9=30.3 (元),
本月的总电费为 118.1+30.3=148.4 (元),
故答案为:148.4.
已知函数f(x)=





3-x2x∈[-1,2]
x-3x∈(2,5]

(1)在如图给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间.魔方格
已知函数f(x)=





cx+1        0<x<c
3x4c+x2c  c≤x<1
满足f(c2)=
9
8

(1)求常数c的值;(2)解不等式f(x)<2.
设函数y=f(x)(x∈R且x≠0)对定义域内任意的x1,x2恒有f(x1•x2)=f(x1)+f(x2
(1)求证:f(1)=f(-1)=0;
(2)求证:y=f(x)是偶函数;
(3)若f(x)为(0,+∞)上的增函数,解不等式f(x)+f(x-
1
2
)≤0
设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)•f(y),当x>0时,有0<f(x)<1.
(1) 求证:f(0)=1,且当x<0时,f(x)>1;
(2) 证明:f(x)在R上单调递减.
在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,△ABM的面积为S.
(1)求函数S=f(x)的解析式、定义域和值域;
(2)求f[f(3)]的值.魔方格