已知定义在R上的奇函数f(x)=4x+bax2+1的导函数为f′(x),且f′(x),在点x=1处取得极值.(1)求函数f(x)的解析式;(2)若函数f(x)在

已知定义在R上的奇函数f(x)=4x+bax2+1的导函数为f′(x),且f′(x),在点x=1处取得极值.(1)求函数f(x)的解析式;(2)若函数f(x)在

题型:解答题难度:一般来源:不详
已知定义在R上的奇函数f(x)=
4x+b
ax2+1
的导函数为f′(x),且f′(x),在点x=1处取得极值.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间(m,m+2)上是增函数,求实数m所有取值的集合;
(3)当x1,x2∈R时,求f′(x1)-f′(x2)的最大值.
答案
(1)∵f(x)=
4x+b
ax2+1
是奇函数,∴f(0)=0,求得b=0,
又∵f′(x)=
4(ax2+1)-4x•2ax
(ax2+1)2
,且f(x)在点x=1处取得极值,
∴f′(1)=0,解得a=1,故f(x)=
4x
x2+1

(2)∵f′(x)=
-4(x-1)(x+1)
(x2+1)2
,由f′(x)>0得,-1<x<1,
∴f(x)的单调递增区间为(-1,1).
若f(x)在区间(m,m+2)上是增函数,则有m=-1.
即m取值的集合为{-1}.
(3)∵f′(x)=
-4(x-1)(x+1)
(x2+1)2
=4[
2
(x2+1)2
-
1
x2+1
]

t=
1
x2+1
,则f′(x)=g(t)=4(2t2-t)=8(t-
1
4
)
2
-
1
2
,t∈(0,1]

f′(x)∈[-
1
2
,4]

f′(x1)-f′(x2)≤4-(-
1
2
)=
9
2

∴f′(x1)-f′(x2)的最大值为
9
2
举一反三
定义在R上的函数f(x)满足:①是偶函数;②对任意的x1、x2都有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]
.请写出这样的一个函数f(x)=______.
题型:填空题难度:简单| 查看答案
已知f(x),g(x),h(x)为一次函数,若对实数x满足|f(x)|-|g(x)|+h(x)=





-1,x<-1
3x+2,-1≤x<0
-2x+2,x≥0
,则h(x)的表达式为(  )
A.h(x)=x-
1
2
B.h(x)=-x-
1
2
C.h(x)=-x+
1
2
D.h(x)=x+
1
2
题型:单选题难度:简单| 查看答案
若函数f(2x+1)=3x-1,则函数f(-2x2+1)的解析式为(  )
A.-3x2-1B.3x2-1C.3x2+1D.-3x2+1
题型:单选题难度:简单| 查看答案
设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,则y=f(x)的表达式是______.
题型:填空题难度:一般| 查看答案
已知f(x+
1
x
)=x2+
1
x2
-x-
1
x
-2,则f(x)
=______.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.