试题分析:(Ⅰ)因为 所以 令 (1)当 所以,当,函数单调递减; 当时,,此时单调递 (2)当 即,解得 ①当时,恒成立, 此时,函数在(0,+∞)上单调递减; ②当 时,单调递减; 时,单调递增; ,此时,函数单调递减; ③当时,由于 时,,此时,函数单调递减; 时,,此时,函数单调递增。 综上所述: 当时,函数在(0,1)上单调递减; 函数在(1,+∞)上单调递增; 当时,函数在(0,+∞)上单调递减; 当时,函数在(0,1)上单调递减; 函数在上单调递增; 函数上单调递减, (Ⅱ)因为,由(Ⅰ)知, ,当, 函数单调递减;当时, 函数单调递增,所以在(0,2)上的最小值为 由于“对任意,存在,使”等价于 “在[1,2]上的最小值不大于在(0,2)上的最小值” (*) 又,所以 ①当时,因为,此时与(*)矛盾; ②当时,因为,同样与(*)矛盾; ③当时,因为 解不等式,可得 综上,的取值范围是 点评:典型题,本题属于导数应用中的基本问题,恒成立问题,往往通过“分离参数”,转化成求函数的最值。涉及对数函数,要特别注意函数的定义域。 |