已知函数F(x)=3x+12x-1,(x≠12).(Ⅰ)证明:F(x)+F(1-x)=3,并求F(12009)+F(22009)+…+F(20082009);(

已知函数F(x)=3x+12x-1,(x≠12).(Ⅰ)证明:F(x)+F(1-x)=3,并求F(12009)+F(22009)+…+F(20082009);(

题型:解答题难度:一般来源:韶关一模
已知函数F(x)=
3x+1
2x-1
,(x≠
1
2
)

(Ⅰ)证明:F(x)+F(1-x)=3,并求F(
1
2009
)+F(
2
2009
)+…+F(
2008
2009
)

(Ⅱ).已知等差数列{an}与{bn}的前n项和分别为Sn与Tn,且
Sn
Tn
=F(n)
.当m>n时,比较
am
bm
an
bn
的大小;
(Ⅲ)在(Ⅱ)条件下,已知a1=2,数列{bn}的公差为d=2.探究在数列{an}与{bn}中是否有相等的项,若有,求出这些相等项由小到大排列后得到的数列{cn}的通项公式;若没有,请说明理由.
答案
(Ⅰ)因为F(x)+F(1-x)=
3x+1
2x-1
+
3(1-x)+1
2(1-x)-1
=3
(2分)
所以设S=F(
1
2009
)+F(
2
2009
)++F(
2008
2009
)
;(1)
S=F(
2008
2009
)+F(
2007
2009
)++F(
1
2009
)
(2)
(1)+(2)得:2S={F(
1
2009
)+F(
2008
2009
)}+{F(
2
2009
)+F(
2007
2009
)}++{F(
2008
2009
)+F(
1
2009
)}

=3×2008=6024,
所以S=3012(5分)
(Ⅱ)因为S2n-1=
(a1+a2n-1)(2n-1)
2
=
(an+an)(2n-1)
2
=(2n-1)an

所以an=
S2n-1
2n-1
;同理bn=
T2n-1
2n-1
.(7分)
所以
an
bn
=
S2n-1
T2n-1
am
bm
=
S2n-1
T2n-1

所以当m>n≥1时,
am
bm
-
an
bn
=
S2m-1
T2m-1
-
S2n-1
T2n-1
=
3(2m-1)+1
2(2m-1)-1
-
3(2n-1)+1
2(2n-1)-1

=
6m-2
4m-3
-
6n-2
4n-3
=
(6m-2)(4n-3)-(6n-2)(4m-3)
(4m-3)(4n-3)

=
10(n-m)
(4m-3)(4n-3)
<0
,∴
am
bm
an
bn
(10分)

(Ⅲ)在(Ⅱ)条件下,当a1=2,d=2时
Sn
Tn
=
2n+
n(n-1)d1
2
nb1+
n(n-1)•2
2
=
d1n-d1+4
2n-2+2b1
=
3n+1
2n-1

所以{-2+2b1=-1
d1=3
d1=3
所以an=2+(n-1)×3=3n-1;bn=
1
2
+(n-1)×2=2n-
3
2
(12分)
假若存在数列{an}中的第n项与数列{bn}中的第k项相等,
an=bk⇒3n-1=2k-
3
2
⇒n=
4k-1
6

因为4k-1为奇数,6为偶数,所以n=
4k-1
6
不是整数,
所以在数列{an}与{bn}中没有相等的项.(14分)
举一反三
函数y=





x2+1(x≤0)
-2x(x>0)
,使函数值为5的x的值是 ______.
题型:填空题难度:一般| 查看答案
设函数f(x)=(x-a)2,g(x)=x,x∈R,a为实常数.
(1)若a>0,设F(x)=
f(x)
g(x)
,x≠0,用函数单调性的定义证明:函数F(x)在区间[a,+∞)上是增函数;
(2)设关于x的方程f(x)=|g(x)|在R上恰好有三个不相等的实数解,求a的值所组成的集合.
题型:解答题难度:一般| 查看答案
已知函数f(x)=ax2+bx+c (
1
3
≤a≤1)的图象过点A(0,1)且直线2x+y-1=0与y=f(x)图象切于A点.
(1)求b与c的值;
(2)设f(x)在[1,3]上的最大值与最小值分别为M(a)、N(a)、g(x)=M(a)-N(a),若g(a)=2,求实数a的值.
题型:解答题难度:一般| 查看答案
设a>0,函数f (x) 是定义在(0,+∞)的单调递增的函数且f (
ax
x-1
)<f(2),试求x的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
4
4+2ax-a
在[0,1]上的最小值为
1
2

(1)求f(x)的解析式;
(2)证明:f(1)+f(2)+…+f(n)>n-
1
2
+
1
2n+1
(n∈N*
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.