定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是______.

定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是______.

题型:填空题难度:一般来源:不详
定义在R上的函数f(x)=x2(ax-3),其中a为常数.若函数f(x)在区间(-1,0)上是增函数,则 a的取值范围是______.
答案
①当a=0时
f(x)=-3x2在区间(-1,0)上是增函数
∴a=0符合题意;
②当a≠0时,f"(x)=3ax (x-
2
a
)
,令f"(x)=0得:x1=0,x2=
2
a

当a>0时,对任意x∈(-1,0),f"(x)>0,
∴a>0 (符合题意)
当a<0时,当 x∈(
2
a
,0)
时f"(x)>0,
2
a
≤-1
,∴-2≤a<0(符合题意)
综上所述,a≥-2.
故答案为:[-2,+∞)
举一反三
已知f(x)的导数是f′(x),且f(x)=x2+2x•f′(1),则f′(1)等于(  )
A.-2B.2C.1D.-4
题型:单选题难度:一般| 查看答案
利用函数单调性的定义证明函数f(x)=1+
1
x
在区间(0,+∞)上是减函数.
题型:解答题难度:一般| 查看答案
某物体一天中的温度T是时间t(单位h)的函数:T(t)=t3-3t+60(℃)t=0表示中午12:00,其后t取正值,则下午3时温度为(  )
A.8℃B.78℃C.112℃D.18℃
题型:单选题难度:一般| 查看答案
已知函数f(x)=xm+
2
x

(1)若m∈Z,判定f(x)的奇偶性;
(2)若f(4)=
33
2
,判断f(x)在(1,+∞)上的单调性,并给予证明.
题型:解答题难度:一般| 查看答案
已知偶函数y=f(x)满足条件f(x+1)=f(x-1),且当x∈[-1,0]时,f(x)=3x+
4
9
,则f(log
1
3
5)的值等于(  )
A.-1B.
29
50
C.
101
45
D.1
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.