已知二次函数f(x)=ax2+bx+4,集合A={x|f(x)=x}.(1)若A={1},求f(x);(2)若1∈A,且1≤a≤2,设f(x)在区间[12,2]

已知二次函数f(x)=ax2+bx+4,集合A={x|f(x)=x}.(1)若A={1},求f(x);(2)若1∈A,且1≤a≤2,设f(x)在区间[12,2]

题型:解答题难度:一般来源:不详
已知二次函数f(x)=ax2+bx+4,集合A={x|f(x)=x}.
(1)若A={1},求f(x);
(2)若1∈A,且1≤a≤2,设f(x)在区间[
1
2
,2]
上的最大值、最小值分别为M、m,记g(a)=M-m,求g(a)的最小值.
答案
(1)∵A={1},∴ax2+(b-1)x+4=0有两等根为1.…(2分)





a+(b-1)+4=0
△=(b-1)2-16a=0
,解得





a=4
b=-7

∴f(x)=4x2-7x+4.…(4分)
(2)∵1∈A,∴a+(b-1)+4=0,∴b=-3-a.…(5分)
∴f(x)=ax2-(a+3)x+4=a(x-
a+3
2a
)2-
a
4
-
9
4a
+
5
2

∵1≤a≤2,∴对称轴为x=
a+3
2a
∈[
5
4
,2]

x∈[
1
2
,2]
,∴M=f(
1
2
)=-
a
4
+
5
2
,m=-
a
4
-
9
4a
+
5
2
.…(8分)
g(a)=M-m=
9
4a
,由g(a)在[1,2]单调递减
可得当a=2时,函数取最小值g(a)min=g(2)=
9
8
.…(10分)
举一反三
设0<a<1,f(logax)=
a(x2-1)
(a2-1)x

(Ⅰ)求f(x)的表达式,并指出其奇偶性、单调性(不必写出证明过程);
(Ⅱ)解关于x的不等式:f(ax)+f(-2)>f(2)+f(-ax
(Ⅲ)(理)当n∈N时,比较f(n)与n的大小.
(文)若f(x)-4的值仅在x<2时取负数,求a的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)=





2x,x≤1
x,x>1
,则f(2)=(  )
A.2B.4C.1D.0
题型:单选题难度:简单| 查看答案
函数y=


sin(2x-
π
3
)
的一个单调递增区间为(  )
A.[-
π
2
π
2
]
B.[
π
6
12
]
C.[-
12
12
]
D.[
12
11π
12
]
题型:单选题难度:简单| 查看答案
已知f(x)=ex-e-x,g(x)=ex+e-x,其中e=2.718….
(1)求[f(x)]2-[g(x)]2的值;
(2)设f(x)•f(y)=4,g(x)•g(y)=8,求
g(x+y)
g(x-y)
的值.
题型:解答题难度:一般| 查看答案
已知f(x)=x|x-a|-2
(1)当a=1时,解不等式
f(x)
x-3
>0

(2)当x∈[0,2]时,不等式f(x)<0恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.