已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).(1)求b;(2)已知g(x)=f(x)+2(x+1)+alnx在区

已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).(1)求b;(2)已知g(x)=f(x)+2(x+1)+alnx在区

题型:解答题难度:一般来源:不详
已知函数f(x)=x2+bsinx-2,(b∈R),且对任意x∈R,有f(-x)=f(x).
(1)求b;
(2)已知g(x)=f(x)+2(x+1)+alnx在区间(0,1)上为单调函数,求实数a的取值范围.
(3)讨论函数h(x)=ln(1+x2)-
1
2
f(x)-k
的零点个数?(提示:[ln(1+x2)]′=
2x
1+x2
答案
(1)由f(-x)=(-x)2+bsin(-x)-2=f(x)得b=0.…(2分)
(2)g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx所以g′(x)=2x+2+
a
x
(x>0)
…(4分)
依题意,2x+2+
a
x
≥0
2x+2+
a
x
≤0
在(0,1)上恒成立…(6分)
即2x2+2x+a≥0或2x2+2x+a≤0在(0,1)上恒成立
a≥-2x2-2x=-2(x+
1
2
)2+
1
2
在(0,1)上恒成立,可知a≥0.
a≤-2x2-2x=-2(x+
1
2
)2+
1
2
在(0,1)上恒成立,
可知a≤-4,所以a≥0或a≤-4.…(9分)
(3)h(x)=ln(1+x2)-
1
2
x2+1-k
,令y=ln(1+x2)-
1
2
x2+1

所以y′=
2x
1+x2
-x=-
(x+1)x(x-1)
x2+1
…(10分)
令y"=0,则x1=-1,x2=0,x3=1,列表如下:
举一反三
题型:单选题难度:简单| 查看答案
题型:填空题难度:一般| 查看答案
题型:填空题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x(-∞,-1)-1(-1,0)0(0,1)1(1,+∞)
y"+0-0+0-
h(x)单调递增极大值ln2+
1
2
单调递减极小值1单调递增极大值ln2+
1
2
单调递减
下列函数中,在区间(0,
π
2
)上是减函数的是(  )
A.y=cosxB.y=sinxC.y=x2D.y=2x+1
已知f(x)是R上的减函数,则满足f(2x-1)<f(1)的实数x的取值范围是______.
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2009)+f(2010)=______.
f(x)=
1-x2
1+x2
(x∈R)

(1)求证:f(
1
x
)=-f(x),(x≠0)

(2)求值:f(1)+f(2)+f(3)+…+f(2008)+f(
1
3
)+f(
1
4
)+f(
1
5
)+…+f(
1
2008
)
已知函数f(x)=-2x2+(a+3)x+1-2a,g(x)=x(1-2x)+a,其中a∈R.
(1)若函数f(x)是偶函数,求函数f(x)在区间[-1,3]上的最小值;
(2)用函数的单调性的定义证明:当a=-2时,f(x)在区间(
1
4
,+∞)
上为减函数;
(3)当x∈[-1,3],函数f(x)的图象恒在函数g(x)图象上方,求实数a的取值范围.