如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.

如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.

题型:解答题难度:一般来源:不详
如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.
答案
∵对任意x∈R,总有f(1+x)=-f(1-x),
∴当x=0时,有f(1+0)=-f(1-0),
即f(1)=-f(1).∴f(1)=0.
又∵f(x)=(x+a)3,∴f(1)=(1+a)3
故有(1+a)3=0,解得a=-1.
∴f(x)=(x-1)3
∴f(2)+f(-2)=(2-1)3+(-2-1)3=13+(-3)3=-26.
举一反三
设定义在N上的函数f(x)满足f(n)=





n+13
f[f(n-18)]
(n≤2000),
(n>2000),
,那么f(2002)=______.
题型:解答题难度:一般| 查看答案
已知f(x)为R上的减函数,则满足f(x2-2x)<f(3)的实数x的取值范围是(  )
A.[-1,3]B.(-∞,-1)∪(3,+∞)C.(-3,13)D.(-∞,-3)∪(1,+∞)
题型:单选题难度:简单| 查看答案
若f(x)=





2ex-1,x<2
lg(x2+1),x≥2
则f(f(3))的值为(  )
A.0B.1C.2D.3
题型:单选题难度:简单| 查看答案
已知函数f(n)=cos
5
(n∈N*)
,则
f(1)+f(2)+…+f(2009)
f(11)+f(22)+f(33)
=______.
题型:填空题难度:简单| 查看答案
设函数fn(θ)=sinnθ+(-1)ncosnθ,0≤θ≤
π
4
,其中n为正整数.
(1)判断函数f1(θ)、f3(θ)的单调性,并就f1(θ)的情形证明你的结论;
(2)证明:2f6(θ)-f4(θ)=(cos4θ-sin4θ)(cos2θ-sin2θ);
(3)对于任意给定的正奇数n,求函数fn(θ)的最大值和最小值.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.