已知:函数f(x)=ax(0<a<1),(Ⅰ)若f(x0)=2,求f(3x0);(Ⅱ)若f(2x2-3x+1)≤f(x2+2x-5),求x的取值范围.

已知:函数f(x)=ax(0<a<1),(Ⅰ)若f(x0)=2,求f(3x0);(Ⅱ)若f(2x2-3x+1)≤f(x2+2x-5),求x的取值范围.

题型:解答题难度:一般来源:不详
已知:函数f(x)=ax(0<a<1),
(Ⅰ)若f(x0)=2,求f(3x0);
(Ⅱ)若f(2x2-3x+1)≤f(x2+2x-5),求x的取值范围.
答案
(1)由题意得,f(x0)=ax0=2,
∴f(3x0)=a3x0=(ax0)3=8,
(2)∵0<a<1,∴函数f(x)=ax在定义域上递减,
∵f(2x2-3x+1)≤f(x2+2x-5),
∴2x2-3x+1≥x2+2x-5,即x2-5x+6≥0,
解得x≥3或x≤2,
故x的取值范围是{x|x≥3或x≤2}.
举一反三
若f(x)=





2x+6,x∈[1,2]
x+7,x∈[-1,1]
,则f(x)的最大值,最小值分别为(  )
A.10,6B.10,8C.8,6D.8,8
题型:单选题难度:一般| 查看答案
若函数y=ax与y=-
b
x
在(0,+∞)上都是减函数,则函数y=ax2+bx在(0,+∞)上是单调递______函数.(填“增函数”或“减函数”)
题型:填空题难度:一般| 查看答案
设向


a
=(cos55°,sin55°)


b
=(cos25°,sin25°)
t是实数,|


a
-t


b
|的最小值为(  )
A.


2
2
B.
1
2
C.1D.


2
题型:单选题难度:一般| 查看答案
设f(x)是以2为周期的奇函数,且f(-
2
5
)=3
,若sinα=


5
5
,则f(4cos2α)=(  )
A.-3B.3C.-


5
5
D.


5
5
题型:单选题难度:简单| 查看答案
定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得


f(x1)f(x2)
=C
,则称函数f(x)在D上的几何平均数为C.已知f(x)=x,x∈[2,4],则函数f(x)=x在[2,4]上的几何平均数为(  )
A.


2
B.2C.2


2
D.4
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.