已知f(x)是定义在R上的奇函数,当x>0时,f(x)为增函数,且f(3)=0那么不等式xf(x)<0的解集是(  )A.(-3,-1)∪(1,3)B.(-3,

已知f(x)是定义在R上的奇函数,当x>0时,f(x)为增函数,且f(3)=0那么不等式xf(x)<0的解集是(  )A.(-3,-1)∪(1,3)B.(-3,

题型:单选题难度:简单来源:不详
已知f(x)是定义在R上的奇函数,当x>0时,f(x)为增函数,且f(3)=0那么不等式xf(x)<0的解集是(  )
A.(-3,-1)∪(1,3)B.(-3,0)∪(3,+∞)C.(-3,0)∪(0,3)D.(-∞,-3)∪(0,3)
答案
∵f(x)为奇函数,且在(0,+∞)上是增函数,f(3)=0,
∴f(3)=-f(-3)=0,在(-∞,0)内是增函数
∴x f(x)<0则





x>0
f(x)<0=f(3)





x<0
f(x)>0=f(-3)

根据在(-∞,0)和(0,+∞)内是都是增函数
解得:x∈(-3,0)∪(0,3)
故选C.
举一反三
已知f(x)=x,x∈[1,16],g(x)=f(x2)-2f(x)+1,则g(x)的最大值为(  )
A.225B.165C.9D.O
题型:单选题难度:简单| 查看答案
已知函数f(x)=





x-3(x≥9)
((x+4))(x<9)
,则f(5)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=x2+
a
x
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)在R上单调递增,设α=
λ
1+λ
,β=
1
1+λ
(λ≠1)
,若有f(α)-f(β)>f(1)-f(0),则λ的取值范围是(  )
A.(-∞,-1)B.(-∞,-1)∪(-1,0)C.(-1,0)D.(-∞,-1)∪(1,+∞)
题型:单选题难度:简单| 查看答案
已知二次函数f(x)=ax2+bx+c(a,b,c为实数a不为零),且同时满足下列条件:
(1)f(-1)=0;
(2)对于任意的实数x,都有f(x)-x≥0;
(3)当x∈(0,2)时有f(x)≤(
x+1
2
)2

①求f(1);
②求a,b,c的值;
③当x∈[-1,1]时,函数g(x)=f(x)-mx(m∈R)是单调函数,求m的取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.