(1)∵f(1)=1, ∴2+a=1,得a=-1 (2)函数的定义域是{x|x≠1} 又f(-x)=-2x-=-(2x+)=-f(x),所以,函数是奇函数 (3)由(1)f(x)=2x-,此函数在(1,+∞)上是增函数 任取1<x1<x2<+∞, f(X1)-f(x2)=(2 x1-)-(2x2-)=(2x 1x 2+1)(x 1-x 2) | x 1x 2 |
由于1<x1<x2<+∞,可得2x1x2+1>0,x1-x20 ∴f(X1)-f(x2)=(2x 1x 2+1)(x 1-x 2) | x 1x 2 | <0, ∴f(X1)<f(x2) ∴函数f(x)在(1,+∞)上是增函数. |