二次函数f(x)=x2+2ax+2a+1.(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;(2)讨论函数f(x)在区间[0,1]上的单调性;(3)

二次函数f(x)=x2+2ax+2a+1.(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;(2)讨论函数f(x)在区间[0,1]上的单调性;(3)

题型:解答题难度:一般来源:不详
二次函数f(x)=x2+2ax+2a+1.
(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;
(2)讨论函数f(x)在区间[0,1]上的单调性;
(3)若对任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.
答案
(1)f(x)≥1⇔x2+2ax+2a≥0对任意x∈R恒成立,
∴△=4a2-8a≤0,解得0≤a≤2,
∴a的范围是[0,2];
(2)f(x)=(x+a)2-a2+2a+1,其图象是开口向上的抛物线,对称轴方程为x=-a,
讨论:①当-a≤0即a≥0时,f(x)在区间[0,1]上单调递增;
②当0<-a<1即-1<a<0时,f(x)在区间[0,-a]上单调递减,在区间[-a,1]上单调递增;
③当-a≥1即a≤-1时,f(x)在区间[0,1]上单调递减.
(3)由题意知,|f(x1)-f(x2)|≤1恒成立等价于f(x)max-f(x)min≤1,
f(0)=2a+1,f(1)=4a+2,f(-a)=-a2+2a+1,
由(2),





a≥0
f(1)-f(0)≤1





-1<a<0
f(1)-f(-a)≤1或f(0)-f(-a)≤1





a≤-1
f(0)-f(1)≤1

解得-1≤a≤0.
举一反三
下面有四个结论:
①偶函数的图象一定与y轴相交.
②奇函数的图象不一定过原点.
③偶函数若在(0,+∞)上是减函数,则在(-∞,0)上一定是增函数.
④有且只有一个函数既是奇函数又是偶函数.
其中正确结论的个数是(  )
A.1B.2C.3D.4
题型:单选题难度:简单| 查看答案
设f(x)是定义在R上的奇函数,当x<0时f(x)=x
2
3
,则f(8)=______.
题型:填空题难度:一般| 查看答案
已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x
(1)求函数f(x)的解析式,并画出函数f(x)的图象.
(2)根据图象写出的单调区间和值域.
题型:解答题难度:一般| 查看答案
已知函数f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函数f(x)的最大值和最小值;
(2)若实数a满足:f(x)-a≥0恒成立,求a的取值范围.
题型:解答题难度:一般| 查看答案
下列函数为偶函数的是(  )
A.y=x2+xB.y=x5C.y=x+
1
x
D.y=
1
x2
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.