设二次函数f(x)=ax2+bx+1(a、b∈R)(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;(2)在(1)的条件下,当x∈[

设二次函数f(x)=ax2+bx+1(a、b∈R)(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;(2)在(1)的条件下,当x∈[

题型:解答题难度:一般来源:不详
设二次函数f(x)=ax2+bx+1(a、b∈R)
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)在(1)的条件下,若f(x)≤m2-2am+2对所有x∈[-1,


2
-1],a∈[-1,1]
恒成立,求实数m的取值范围.
答案
(1)∵f(-1)=0,
∴a-b+1=0即b=a+1,
又对任意实数x均有f(x)≥0成立





a>0
△=b2-4a≤0
恒成立,即(a-1)2≤0恒成立
∴a=1,b=2;
(2)由(1)可知f(x)=x2+2x+1
∴g(x)=x2+(2-k)x+1
∵g(x)在x∈[-2,2]时是单调函数,
[-2,2]⊂(-∞,
k-2
2
]或[-2,2]⊂[
k-2
2
,+∞)

2≤
k-2
2
k-2
2
≤-2

即实数k的取值范围为(-∞,-2]∪[6,+∞).
(3)f(x)≤m2-2am+2对所有x∈[-1,


2
-1],a∈[-1,1]
恒成立,
等价于m2-2am≥0对所有a∈[-1,1]恒成立,
构造函数g(a)=m2-2am,∴





m2-2m≥0
m2+2m≥0
,∴m≥2或m≤-2
举一反三
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)
(  )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数
题型:单选题难度:一般| 查看答案
设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.
题型:解答题难度:一般| 查看答案
若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则(  )
A.f(x)与g(x)均为偶函数
B.f(x)为奇函数,g(x)为偶函数
C.f(x)与g(x)均为奇函数
D.f(x)为偶函数,g(x)为奇函数
题型:单选题难度:简单| 查看答案
下列判断正确的是(  )
A.定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数
B.定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数
C.定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数
D.既是奇函数又是偶函数的函数有且只有一个
题型:单选题难度:一般| 查看答案
证明:函数f(x)=-2x2+1是偶函数,且在[0,+∞)上是减少的.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.