已知函数f(x)=a-1|2x-b|是偶函数,a为实常数.(1)求b的值;(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的

已知函数f(x)=a-1|2x-b|是偶函数,a为实常数.(1)求b的值;(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的

题型:解答题难度:一般来源:不详
已知函数f(x)=a-
1
|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由;
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
答案
(1)由已知可得,f(x)=a-
1
|2x-b|

且函数的定义域为D=(-∞,
b
2
)∪(
b
2
,+∞)

又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0.
又对任意x∈D,有f(x)=f(-x),可得b=0.
因此所求实数b=0.…(3分)
(2)由(1)可知,f(x)=a-
1
2|x|
(D=(-∞,0)∪(0,+∞))

f(x)=a-
1
2|x|
的图象,
知:f(x)在区间(0,+∞)上是增函数,f(x)在区间(-∞,0)上是减函数
又n>m>0,
∴y=f(x)在区间[m,n]上是增函数.
∴有





1-
1
2m
=m
1-
1
2n
=n

即方程1-
1
2x
=x
,2x2-2x+1=0,
∵△=4-8<0,
∴不存在正实数m,n,满足题意.…(7分)
(3)由(1)可知,
f(x)=a-
1
2|x|
(D=(-∞,0)∪(0,+∞))
f(x)=a-
1
2|x|
的图象,
知f(x)在区间(0,+∞)上是增函数,f(x)在区间(-∞,0)上是减函数
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],故必有m、n同号.
①当0<m<n时,f(x)在区间[m,n]上是增函数,





a-
1
2m
=m
a-
1
2n
=n

即方程x=a-
1
2x
,2x2-2ax+1=0有两个不相等的正实数根,
因此





2a>0
△=4a2-8>0

解得a>


2
.…(10分)
②当m<n<0时,f(x)在区间[m,n]上是减函数,





a+
1
2m
=n
a+
1
2n
=m

化简得(m-n)a=0,a=0
综上,实数a的取值范围a=0,或a>


2
.…(12分)
举一反三
函数y=f(x),(-
a2
2
≤x≤2)
是奇函数,由实a数的值是(  )
A.-2B.2C.2或-2D.无法确定
题型:单选题难度:简单| 查看答案
已知函数f(x)=
px2+2
x-q
,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5
(1)求实数p,q的值;
(2)判断函数f(x)在[1,+∞)上的单调性,并证明.
题型:解答题难度:一般| 查看答案
若函数f(x)=kax-a-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是(  )
A.B.C.D.
题型:单选题难度:简单| 查看答案
设函数f(x)=x+a


1-x
(a∈R)

(1)若a=1,求f(x)的值域;
(2)若不等式f(x)≤2对x∈[-8,-3]恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.