已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函数f(x)图象关于原点中心对称,其图象在x=3处的切线方程为8x-y-18=0,

已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函数f(x)图象关于原点中心对称,其图象在x=3处的切线方程为8x-y-18=0,

题型:解答题难度:一般来源:广东模拟
已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函数f(x)图象关于原点中心对称,其图象在x=3处的切线方程为8x-y-18=0,
g(x)=f/(x)+f/(


3
)

(1)求函数f(x)的解析式;
(2)若f(x)>
3
2
x2-3x+a2+a
在[0,2]上恒成立,求实数a的取值范围;
(3)若数列{an}满足an+1=g(an),a1=2,(n∈N*),
试证明:
1
a1
+
1
a2
+…+
1
an
7
8
答案
(1)因为函数f(x)关于原点对称,所以b=d=0,所以f(x)=ax3+cx,
又有f′(x)=3ax2+c,又函数f(x)在x=3处的切线方程为8x-y-18=0,
所以f′(3)=3a×9+c=8,f(3)=27a+3c=6,
所以a=
1
3
,c=-1
f(x)=
1
3
x3-x


(2)f(x)>
3
2
x2-3x+a2+a
在[0,2]上恒成立,即f(x)-
3
2
x2+3x>a2+a

即证
1
3
x3-
3
2
x2+2x>a2+a
在[0,2]上恒成立,
h(x)=
1
3
x3-
3
2
x2+2x
,则h′(x)=x2-3x+2,令h′(x)=x2-3x+2=0,
则x1=1,x2=2
则有当x<1时,f′(x)>0,所以f(x)在(-∞,1)递增;
当1<x<3时,f′(x)<0,所以f(x)在(1,3)递减;
当x>3时,f′(x)>0,所以f(x)在(-∞,1)递增;
所以h(0)=0,h(2)=
2
3

所以函数h(x)在[0,2]的最小值为0,所以有0>a2+a,即-1<a<0

(3)g(x)=f/(x)+f/(


3
)=x2+1>0
,由an+1=g(an),a1=2,
所以an+1=an2+1>an2>0,
所以lnan+1>2lnan>22lnan-1>>2n-1ln2,
所以an22n-1,则有
1
an
1
22n-1

所以
1
a1
+
1
a2
++
1
an
1
2
+
1
22
+
1
24
++
1
22n-1
1
2
+
1
22
+
1
23
+
1
24
+
1
25
++
1
22n-1
-
1
23
1
2
[1-(
1
2
)
2n-1
]
1-
1
2
-
1
23
<1-(
1
2
)2n-1-
1
8
7
8
(14分)
举一反三
若函数y=f(x-2)是偶函数,则y=f(x)的对称轴方程为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)、g(x),下列说法正确的是(  )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数
题型:单选题难度:简单| 查看答案
使x2-x-a2+a+1>0对任意实数x成立,则(  )
A.-1<a<1B.0<a<2C.-
1
2
<a<
3
2
D.-
3
2
<a<
1
2
题型:单选题难度:一般| 查看答案
(1)①计算
lim
n→∞
an+1+bn
an+bn+1
(a2+b2≠0且a≠-b);
②计算
lim
x→-∞


x2-3
3x3+1


(2)设函数f(x)=





x2


1+x2
-1
-1(x>0)
a(x=0)
b
x
(


1+x
-1)(x<0)

①若f(x)在x=0处的极限存在,求a,b的值;
②若f(x)在x=0处连续,求a,b的值.
题型:解答题难度:一般| 查看答案
函数f(x)在定义域R上不是常数函数,且f(x)满足条件:对任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),
则f(x)是(  )
A.奇函数但非偶函数B.偶函数但非奇函数
C.既是奇函数又是偶函数D.是非奇非偶函数
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.