若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )A.ex-e-xB.12(ex+e-x)C.12(e-x-ex)D

若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )A.ex-e-xB.12(ex+e-x)C.12(e-x-ex)D

题型:单选题难度:简单来源:湖北
若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=(  )
A.ex-e-xB.
1
2
(ex+e-x
C.
1
2
(e-x-ex
D.
1
2
(ex-e-x
答案
∵f(x)为定义在R上的偶函数
∴f(-x)=f(x)
又∵g(x)为定义在R上的奇函数
g(-x)=-g(x)
由f(x)+g(x)=ex
∴f(-x)+g(-x)=f(x)-g(x)=e-x
∴g(x)=
1
2
(ex-e-x
故选D
举一反三
设f(x)是以3为周期的周期函数,且x∈(0,3]时f(x)=lgx,N是y=f(x)图象上的动点,


MN
=(2
,10),则以M点的轨迹为图象的函数在(1,4]上的解析式为(  )
A.g(x)=lg(x-1)-10,x∈(1,4]B.g(x)=lg(x-1)+10,x∈(1,4]
C.g(x)=lg(x-5)+10,x∈(1,4]D.g(x)=lg(x+2)-10,x∈(1,4]
题型:单选题难度:一般| 查看答案
已知函数f(x)=x3-3|x-a|+λ•sin(π•x),其中a,λ∈R;
(1)当a=0时,求f(1)的值并判断函数f(x)的奇偶性;
(2)当a=0时,若函数y=f(x)的图象在x=1处的切线经过坐标原点,求λ的值;
(3)当λ=0时,求函数f(x)在[0,2]上的最小值.
题型:解答题难度:一般| 查看答案
已知偶函数y=f(x)对任意实数x都有f(x+1)=-f(x),且在[0,1]上单调递减,则(  )
A.f(
7
2
)
f(
7
3
)
f(
7
5
)
B.f(
7
5
)
f(
7
2
)
f(
7
3
)
C.f(
7
3
)
f(
7
2
)
f(
7
5
)
D.f(
7
5
)
f(
7
3
)
f(
7
2
)
题型:单选题难度:一般| 查看答案
已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,且当x∈(0,e]时,f(x)=ax+lnx.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)是否存在实数a<0,使得当x∈[-e,0)时,函数f(x)的最小值是3?
题型:解答题难度:一般| 查看答案
已知f(x)是定义在实数集上的函数,且f(x+2)=
1+f(x)
1-f(x)
,若f(1)=2+


3
,则f(2005)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.