已知奇函数f(x)是定义在(-1,1)上的增函数,若f(m-1)+f(2m-1)≤0,则m的取值范围是(  )A.(-∞,23)B.(-∞,23]C.(0,23

已知奇函数f(x)是定义在(-1,1)上的增函数,若f(m-1)+f(2m-1)≤0,则m的取值范围是(  )A.(-∞,23)B.(-∞,23]C.(0,23

题型:单选题难度:简单来源:不详
已知奇函数f(x)是定义在(-1,1)上的增函数,若f(m-1)+f(2m-1)≤0,则m的取值范围是(  )
A.(-∞,
2
3
)
B.(-∞,
2
3
]
C.(0,
2
3
)
D.(0,
2
3
]
答案
∵f(m-1)+f(2m-1)≤0,
∴f(m-1)≤-f(2m-1),
又∵f(x)为奇函数,则-f(2m-1)=f(1-2m),
则有f(m-1)≤f(1-2m),
∵f(x)为(-1,1)上的增函数,





-1<m-1<1
-1<2m-1<1
m-1≤1-2m

∴0<m≤
2
3

故选D.
举一反三
已知f(x)=loga
1+x
1-x
(a>0,且a≠1),
(1)判断奇偶性,并证明;
(2)求使f(x)<0的x的取值范围.
题型:解答题难度:一般| 查看答案
下列函数中是奇函数的序号是______;
y=-
1
x
;     ②f(x)=x2;      ③y=2x+1;    ④f(x)=-3x,x∈[-1,2].
题型:填空题难度:一般| 查看答案
已知函数f(x)=
x2+x+a
x
(x≠0,a∈R)

(Ⅰ)当a<0时,证明:函数f(x)在区间(0,+∞)上是增函数;
(Ⅱ)若对任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=loga(3+2x),g(x)=loga(3-2x),(a>0,且a≠1).
(1)求函数f(x)-g(x)定义域;
(2)判断函数f(x)-g(x)的奇偶性,并予以证明;
(3)求使f(x)-g(x)>0的x的取值范围.
题型:解答题难度:一般| 查看答案
已知f(x)=ax3+bx+2,且f(-5)=3,则f(5)的值为(  )
A.1B.3C.5D.不能确定
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.