定义域R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥118(3t-t)恒成立,则实数

定义域R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥118(3t-t)恒成立,则实数

题型:单选题难度:简单来源:江西模拟
定义域R的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,若x∈[-4,-2]时,f(x)≥
1
18
(
3
t
-t)
恒成立,则实数t的取值范围是(  )
A.(-∞,-1]∪(0,3]B.(-∞,-


3
]∪(0,


3
]
C.[-1,0)∪[3,+∞)D.[-


3
,0)∪[


3
,+∞)
答案
∵x∈[-4,-2]
∴x+4∈[0,2]
∵x∈[0,2]时,f(x)=x2-2x
∴f(x+4)=(x+4)2-2(x+4)=x2+6x+8
∵函数f(x)满足f(x+2)=3f(x)
∴f(x+4)=3f(x+2)=9f(x)
∴f(x)=
1
9
(x2+6x+8),x∈[-4,-2]
x∈[-4,-2]时,f(x)≥
1
18
(
3
t
-t)
恒成立
1
18
(
3
t
-t)≤f(x)min
=-
1
9

解不等式可得t≥3或-1≤t<0
故选C.
举一反三
已知函数f(x)=ex(e为自然对数的底数),g(x)=ln(f(x)+a)(a为常数),g(x)是实数集R上的奇函数.
(1)求证:f(x)≥x+1(x∈R);
(2)讨论关于x的方程:lng(x)=g(x)•(x2-2ex+m)(m∈R)的根的个数;
(3)设n∈N*,证明:(
1
n
)n+(
2
n
)n+(
3
n
)n+…+(
n
n
)n
e
e-1
(e为自然对数的底数).
题型:解答题难度:一般| 查看答案
函数f(x)=x-[x],x∈R(其中[x]表示不超过x的最大整数)的最小正周期是______.
题型:填空题难度:一般| 查看答案
定义在R上的函数f(x)是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于(  )
A.-1B.0C.1D.4
题型:单选题难度:一般| 查看答案
已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:对任意实数x都有f(x)≥2x;且当0<x<2时,总有f(x)≤
1
2
(x+1)2
成立.
(1)求f(1)的值;
(2)求f(-1)的取值范围.
题型:解答题难度:一般| 查看答案
函数y=f(x)为偶函数,则函数y=f(x+1)的一条对称轴是______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.