已知函数f(x)=2x-12x+1.(1)判断f(x)的奇偶性,并加以证明;(2)判断f(x)的单调性,并加以证明;(3)解不等式f(x)>79.

已知函数f(x)=2x-12x+1.(1)判断f(x)的奇偶性,并加以证明;(2)判断f(x)的单调性,并加以证明;(3)解不等式f(x)>79.

题型:解答题难度:一般来源:不详
已知函数f(x)=
2x-1
2x+1

(1)判断f(x)的奇偶性,并加以证明;
(2)判断f(x)的单调性,并加以证明;
(3)解不等式f(x)>
7
9
答案
(1)f(x)为奇函数.∵f(x)的定义域为R,对∀x∈R,
f(-x)=
2-x-1
2-x+1
=
1-2x
1+2x
=-
2x-1
2x+1
=-f(x)
,∴f(x)为奇函数.…(4分)
(2)f(x)是(-∞,+∞)上的增函数.∵对-∞<x1<x2<+∞,2x1-2x2<0f(x)=
2x-1
2x+1
=1-
2
2x+1

f(x1)-f(x2)=(1-
2
2x1+1
)-(1-
2
2x2+1
)=
2
2x2+1
-
2
2x1+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
<0

∴f(x)是(-∞,+∞)上的增函数.…(8分)
(3)∵f(3)=
7
9
,又∵f(x)>
7
9
,即为f(x)>f(3).…(10分)
又f(x)是(-∞,+∞)上的增函数,
∴不等式f(x)>
7
9
的解集为{x|x>3}.…(13分)
举一反三
已知函数f(x)在定义域(-∞,1]上是减函数,问是否存在实数k,使不等式f(k-sinx)≥f(k2-sin2x)对一切实数x恒成立?并说明理由.
题型:解答题难度:一般| 查看答案
已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则(  )
A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(-1)<f(0)
题型:单选题难度:简单| 查看答案
若f(x)=asinx+3cosx是偶函数,则实数a=______.
题型:填空题难度:一般| 查看答案
定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,均有|f(x1)-f(x2)|≤k(x1-x2|成立,则称函数f(x)在定义域D上满足利普希茨条件.对于函数f(x)=


x
(x≥1)满足利普希茨条件,则常数k的最小值应是(  )
A.2B.1C.
1
2
D.
1
3
题型:单选题难度:一般| 查看答案
函数y=f(x)满足 f(x+2)=-f(x),当x∈(-2,2]时,f(x)=x2-1,则f(x)在[0,2010]上零点的个数为(  )
A.1004B.1005C.2009D.2010
题型:单选题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.