(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=

(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=

题型:解答题难度:一般来源:不详
(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=9,a7=13.
(Ⅰ)求数列 {bn} 的通项公式;
(Ⅱ)若cn=anbn(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn
乙:定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=
1
4x
-
a
2x
(a∈R)
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若f(x)是[0,1]上的增函数,求实数a的取值范围.
答案
甲:(Ⅰ)由bn=2-Sn,令n=1,则b1=2-S1,∴b1=1,…(1分)
当n≥2时,由bn=2-Sn,可得bn-bn-1=-(Sn-Sn-1)=-bn,…(3分)
∴bn=
1
2
bn-1,…(4分)
∴数列{bn}是以1为首项,
1
2
为公比的等比数列
∴bn=
1
2n-1
.…(6分)
(Ⅱ)数列{an}为等差数列,公差d=
1
2
(a7-a5)=2,∴an=2n-1,…(8分)
从而cn=anbn=(2n-1)•
1
2n-1
,…(9分)
∴Tn=1+
3
2
+…+(2n-1)•
1
2n-1

1
2
Tn=
1
2
+
3
22
+…+(2n-3)•
1
2n-1
+(2n-1)•
1
2n

两式相减可得:
1
2
Tn=1+
2
2
+
2
22
+…+
2
2n-1
-(2n-1)•
1
2n
=3-
2n+3
2n
 …(11分)
从而Tn=6-
2n+3
2n-1
.…(12分)
乙:(Ⅰ)设x∈[0,1],则-x∈[-1,0],∴f(-x)=4x-a•2x
∵f(-x)=-f(x),∴f(x)=a•2x-4x,x∈[0,1],…(3分)
令t=2x,则t∈[1,2],∴g(t)=at-t2=-(t-
a
2
2+
a2
4

∴当
a
2
≤1
,即a≤2时,g(t)max=g(1)=a-1;
1<
a
2
<2
,即2<a<4时,g(t)max=g(
a
2
)=
a2
4

a
2
≥2
,即a≥4时,g(t)max=g(2)=2a-4;.…(8分)
(Ⅱ)因为函数f(x)在[0,1]上是增函数,
所以f′(x)=2xln2(a-2•2x)≥0    …(10分)
∴a≥2•2x恒成立
∵x∈[0,1]
∴a≥4                   …(12分)
举一反三
已知函数f(x)=xlnx,g(x)=x+
a2
x
,(a>0).
(Ⅰ)求f(x)在区间[1,e](e为自然对数的底数)上的最大值;
(Ⅱ)若对任意的x1,x2∈[1,e]都有g(x1)≥f(x2)成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
设函数f(x)=
1
3
ax3+
1
2
bx2+cx(a,b,c∈R,a≠0)
的图象在点(x,f(x))处的切线的斜率为k(x),且函数g(x)=k(x)-
1
2
x
为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式k(x)≤
1
2
x2+
1
2
恒成立.
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:
1
k(1)
+
1
k(2)
+…+
1
k(n)
2n
n+2
(n∈N*).
题型:解答题难度:一般| 查看答案
设函数f(x)=2x3-12x+c是定义在R上的奇函数.
(Ⅰ)求c的值及函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
题型:解答题难度:一般| 查看答案
(1)设f(x)是定义在R上奇函数,且当x>0时,f(x)=2x-3,则当x<0时,f(x)表达式为______.
(2)设f(x)是定义在R上奇函数,且f(x+1)=-f(x),当x∈(0,1)时,f(x)=2x-3,则x∈(3,4)时,f(x)表达式为______.
题型:填空题难度:简单| 查看答案
已知f(x)=g(x)+2,且g(x)为奇函数,若f(2)=3,则f(-2)=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.