已知对任意x∈R,都有x3-2x2-x+2=(x+a)(x+b)(x+c),且a>b>c时,(1)求实数a,b,c的值;(2)求函数f(x)=ax2+2bx+c
题型:解答题难度:一般来源:不详
已知对任意x∈R,都有x3-2x2-x+2=(x+a)(x+b)(x+c),且a>b>c时, (1)求实数a,b,c的值; (2)求函数f(x)=ax2+2bx+c在[0,3]的值域. |
答案
(1)由于x3-2x2-x+2=(x+1)(x-1)(x-2)知, (x+a)(x+b)(x+c)=(x+1)(x-1)(x-2), 由于a>b>c,得到a=1,b=-1,c=-2 (2)由(1)知f(x)=ax2+2bx+c=x2-2x-2=(x-1)2-3 则函数的图象开口方向向上,对称轴为x=1, 故函数f(x)在[0,1]上为减函数,在(1,3]上为增函数 则f(x)在[0,3]上最小值为-3,最大值为1 故函数f(x)在[0,3]的值域为[-3,1]. |
举一反三
若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是______. |
若函数f(x)=lg(ax2+2x+1)的值域是R,则a的取值范围是______. |
当x∈[-2,1]时,函数f(x)=x2+2x-2的值域是( )A.[1,2] | B.[-2,1] | C.[-3,1] | D.[-3,+∞) |
|
若θ是三角形的内角,且函数y=x2•cosθ-4x•sinθ+6,对于任意实数x,y均取正值,那么θ的取值范围是( ) |
设向量=(t+2,t2-cos2α),=(λ,+sinα),其中t,λ,α为实数,若=2, (1)求λ的取值范围; (2)求实数的最大值和最小值. |
最新试题
热门考点