已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且f(c)=0,当0<x<c时,恒有f(x)>0.(1)当a=13,c=

已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且f(c)=0,当0<x<c时,恒有f(x)>0.(1)当a=13,c=

题型:解答题难度:一般来源:不详
已知二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,且f(c)=0,当0<x<c时,恒有f(x)>0.
(1)当a=
1
3
,c=2时,求不等式f(x)<0的解集;
(2)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且ac=
1
2
,求a的值;
(3)若f(0)=1,且f(x)≤m2-2m+1对所有x∈[0,c]恒成立,求正实数m的最小值.
答案
(1)当a=
1
3
,c=2时,f(x)=
1
3
x2+bx+2

f(x)的图象与x轴有两个不同交点,
因为f(2)=0,
设另一个根为x1,则2x1=6,x1=3.(2分)
则f(x)<0的解集为{x|2<x<3}.(4分)
(2)函数f(x)的图象与x轴有两个交点,因f(c)=0,
设另一个根为x2,则cx2=
c
a
,于是x2=
1
a
.(6分)
又当0<x<c时,恒有f(x)>0,则
1
a
>c

则三交点为(c,  0),  (
1
a
,  0),  (0,  c)
,(8分)
这三交点为顶点的三角形的面积为S=
1
2
(
1
a
-c)c=8
,且ac=
1
2

解得a=
1
8
,  c=4
.(10分)
(3)当0<x<c时,恒有f(x)>0,则
1
a
>c

所以f(x)在[0,c]上是单调递减的,且在x=0处取到最大值1,(12分)
要使f(x)≤m2-2m+1,对所有x∈[0,c]恒成立,
必须f(x)max=1≤m2-2m+1成立,所有m2-2m+1≥1,即m2-2m≥0,
解得m≥2或m≤0,而m>0,
所以m的最小值为2.(16分)
举一反三
已知函数y=ax2+bx+c(a≠0)图象上有两点A1(m1,y1),A2(m2,y2),满足a2+(y1+y2)a+y1•y2=0.
求证:
(1)存在i∈{1,2},使yi=-a;
(2)抛物线y=ax2+bx+c与x轴总有两个不同的交点;
(3)若使该图象与x轴交点为(x1,0)(x2,0),(x1<x2),则存在i∈{1,2},使x1<mi<x2
题型:解答题难度:一般| 查看答案
已知下列四个函数:①y=log
1
2
(x+2)
;②y=3-2x+1;③y=1-x2;④y=3-(x+2)2.其中图象不经过第一象限的函数有______.(注:把你认为符合条件的函数的序号都填上)
题型:填空题难度:简单| 查看答案
已知3sin2α+2sin2β-2sinα=0,则cos2α+cos2β的取值范围为______.
题型:填空题难度:一般| 查看答案
已知f(x)=-3x2+a(6-a)x+b.
(1)解关于a的不等式f(1)>0;
(2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值.
题型:解答题难度:一般| 查看答案
抛物线y=x2-3x+1的顶点在第______象限.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.