.已知函数f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( )A.GFB.G="F"C.FG
试题库
首页
.已知函数f(x)=lg(x2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( )A.GFB.G="F"C.FG
题型:单选题
难度:简单
来源:不详
.已知函数f(x)=lg(x
2
-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( )
A.G
F
B.G="F"
C.F
G
D.F∩G=
答案
A
解析
F={x|x
2
-3x+2>0}={x|x>2或x<1},G={x|x>2}.∴G
F.
举一反三
若定义在(-1,0)上的函数f(x)=log
2
a(x+1)满足f(x)>0,则a的取值范围是( )
A.(0,
)
B.(0,
]
C.(
,+∞)
D.(0,+∞)
题型:单选题
难度:简单
|
查看答案
若函数f(x)=log
a
x(0<a<1)在区间[a,2a]上的最大值是最小值的3倍,则a等于( )
A.
B.
C.
D.
题型:单选题
难度:简单
|
查看答案
log
a
<1,则a的取值范围是____________.
题型:填空题
难度:简单
|
查看答案
函数y=log
a
(x-2)+1(a>0且a≠1)恒过定点______________.
题型:填空题
难度:简单
|
查看答案
设函数f(x)=x
2
-x+b,且f(log
2
a)=b,log
2
[f(a)]=2(a≠1),求f(log
2
x)的最小值及对应的x的值.
题型:解答题
难度:简单
|
查看答案
最新试题
试管中盛装红棕色气体,当倒扣在盛有水的水槽中时,试管内水面上升,但不能充满试管,当向试管内鼓入少量O2后,可以观察到试管
形成多育多子的传统生育观的根源是A.“不孝有三,无后为大”的传统观念B.享受天伦之乐C.传统农业社会生产力水平低下D.社
已知则= .
平行四边形内一点到四条边的距离分别是1,2,3,4,那么,这样的平行四边形的面积最小是( )A.21B.22C.24D
解不等式组2x+4≤5(x+2)①x-1<23x②,并求它的整数解.
设集合,则满足的集合B的个数是( ) 1 3 4 8
在△ABC中,M为边BC上任意一点,N为AM中点,,则μ+λ的值为[ ]A.B.C.D.1
I want to watch the ball game. Can you _____ the TV?[ ]A
《上海县竹枝词》有诗云:“卅年求富更求强,造炮成船法仿洋。海面未收功一战,总归虚牝掷金黄。”与上述内容有关的历史事件是A
战国初年三家分晋的三家是指 ①齐国 ②魏国 ③赵国 ④韩国 [ ]A.①②③ B.②③④ C.①②④
热门考点
After graduation from college, he began to wander from city
上海世博会志愿者招募工作已于2009年5月1日启动,预计总共招募170000人,将170000这个数用科学记数法表示正确
下列加点的熟语使用恰当的一项是( )A.时下的店名和商品名在吸引外来词时,追求时髦,哗众取宠,令人费解。这些叫人看不
下列有关文学常识的表述,正确的一项是 [ ]A.庄子名周,是春秋时期道家思想的开创者和代表人物。《庄子》分内篇、
求Sn=(x+)+(x2+)+…+(xn+)(y)。
被称作古代冶金史的一大飞跃的事件是 ( )A.木炭的使用B.煤的使用C.焦炭的使用D.石油的使用
已知中,点是边的中点,则等于_______.
在平面内有n条直线,其中任何两条直线不平行,任何三条直线都不相交于同一点,则这n条直线把平面分成______部分.
以下哪种生态系统每年生产的氧气最多?[ ]A.海洋生态系统 B.草原生态系统 C.森林生态系统D.农田生态系统
设集合,,则 ( )A.B.C.D.
古代诗歌鉴赏
神经、体液调节在维持稳态中的作用
硬水与软水
省略号
油脂的应用
整式的乘除运算
自然资源概况
李时珍和《本草纲目》
著名代表诗人及朝代
淋巴
超级试练试题库
© 2017-2019 超级试练试题库,All Rights Reserved.