(1)证明:设{an}的公比为q,由题设a1>0,q>0. (i)当q=1时,Sn=na1,从而 Sn•Sn+2-Sn+12 =na1•(n+2)a1-(n+1)2a12 =-a12<0 (ⅱ)当q≠1时,Sn=,从而 Sn•Sn+2-Sn+12=- =-a12qn<0. 由(i)和(ii)得Sn•Sn+2,<Sn+12.根据对数函数的单调性,知 lg(Sn•Sn+2)<lgSn+12, 即<lgSn+1. (2)不存在. 要使=lg(Sn+1-c).成立,则有
| (Sn-c)(Sn+2-c)=(Sn+1-c)2 | Sn-c>0. |
| |
分两种情况讨论: (i)当q=1时, (Sn-c)(Sn+2-c)=(Sn+1-c)2 =(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2 =-a12<0. 可知,不满足条件①,即不存在常数c>0,使结论成立. (ii)当q≠1时,若条件①成立,因为 (Sn-c)(Sn+2-c)-(Sn+1-c)2 =[-c][-c]-[-c]2 =-a1qn[a1-c(1-q)], 且a1qn≠0,故只能有a1-c(1-q)=0,即c= 此时,因为c>0,a1>0,所以0<q<1. 但0<q<1时,Sn-=-<0,不满足条件②,即不存在常数c>0,使结论成立. 综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使=lg(Sn+1-c). |