已知各项均为正数的等比数列{an}的公比为q,且0<q<.(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;(2)若a1=1,且对任意正整数k,ak

已知各项均为正数的等比数列{an}的公比为q,且0<q<.(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;(2)若a1=1,且对任意正整数k,ak

题型:不详难度:来源:
已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.
答案
(1)不可能(2)(ⅰ)q=-1(ⅱ)T2011=2012S2011-2011
解析
(1)由条件知an=a1qn-1,0<q<,a1>0,所以数列{an}是递减数列.若有ak,am,an(k<m<n)成等差数列,则中项不可能是ak(最大),也不可能是an(最小),
若2am=ak+an2qm-k=1+qn-k,(*)
由2qm-k≤2q<1,1+qh-k>1,知(*)式不成立,
故ak,am,an不可能成等差数列.
(2)(ⅰ)(解法1)ak-ak+1-ak+2=a1qk-1(1-q-q2)=a1qk-1
,知ak-ak+1-ak+2<ak<ak-1<…,
且ak-ak+1-ak+2>ak+2>ak+3>…,
所以ak-ak+1-ak+2=ak+1,即q2+2q-1=0,
所以q=-1.
(解法2)设ak-ak+1-ak+2=am,则1-q-q2=qm-k
由1-q-q2知m-k=1,即m=k+1,
以下同解法1.
(ⅱ)bn
(解法1)Sn=1++…+
Tn=1++…+
=n+=n
=nSn-[(1-)+(1-)+(1-)+…+(1-)]
=nSn=nSn
=nSn-n+Sn=(n+1)Sn-n,所以T2011=2012S2011-2011.
(解法2)Sn+1=1+=Sn,所以(n+1)Sn+1-(n+1)Sn=1,
所以(n+1)Sn+1-nSn=Sn+1,2S2-S1=S1+1,3S3-2S2=S2+1,……
(n+1)Sn+1-nSn=Sn+1,累加得(n+1)Sn+1-S1=Tn+n,
所以Tn=(n+1)Sn+1-1-n=(n+1)Sn-n=(n+1)(Sn+bn)-1-n
=(n+1)-1-n=(n+1)Sn-n,
所以T2011=2012S2011-2011
举一反三
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an}、{bn}的通项公式;
(2)设Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.
题型:不详难度:| 查看答案
已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an·bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由..
题型:不详难度:| 查看答案
已知公差不为0的等差数列{an}满足a1,a3,a9成等比数列,Sn为数列{an}的前n项和,则=________.
题型:不详难度:| 查看答案
已知等差数列{an}的公差d=1,前n项和为Sn.
(1)若1,a1,a3成等比数列,求a1
(2)若S5>a1a9,求a1的取值范围.
题型:不详难度:| 查看答案
已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.