在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.(1)求an与bn.(2)证明:

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.(1)求an与bn.(2)证明:

题型:不详难度:来源:
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.
(1)求an与bn.
(2)证明:++…+<.
答案
(1) an=3n,bn=3n-1   (2)见解析
解析
(1)设{an}的公差为d,
因为所以
解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n,bn=3n-1.
(2)因为Sn=,
所以== (-).
++…+
=[(1-)+(-)+(-)+…+(-)]
=(1-).
因为n≥1,所以0<,于是≤1-<1,
所以(1-)<.
++…+<.
举一反三
甲、乙两人用农药治虫,由于计算错误,在A,B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个能容纳1千克药水的药瓶,他们从A,B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为an%,B喷雾器中药水的浓度为bn%.
(1)证明an+bn是一个常数.
(2)求an与an-1的关系式.
(3)求an的表达式.
题型:不详难度:| 查看答案
已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房.
(1)分别写出第1年末和第2年末的实际住房面积的表达式.
(2)如果第5年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
题型:不详难度:| 查看答案
若数列{an}满足:存在正整数T,对于任意正整数n都有anTan成立,则称数列{an}为周期数列,周期为T.已知数列{an}满足a1m(m>0),an+1则下列结论中错误的是(  )
A.若m,则a5=3
B.若a3=2,则m可以取3个不同的值
C.若m,则数列{an}是周期为3的数列
D.∃m∈Q且m≥2,使得数列{an}是周期数列

题型:不详难度:| 查看答案
已知公差不为0的等差数列{an},a1=1,且a2a4-2,a6成等比数列.
(1)求数列{an}的通项公式;
(2)已知数列{bn}的通项公式是bn=2n-1,集合A={a1a2,…,an,…},B={b1b2b3,…,bn,…}.将集合AB中的元素按从小到大的顺序排成一个新的数列{cn},求数列{cn}的前n项和Sn.
题型:不详难度:| 查看答案
在等差数列{an}中,首项a1=120,公差d=-4,若Snan(n≥2),则n的最小值为(  )
A.60 B.62 C.70 D.72

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.