已知数列{an}的通项公式为an=3n-1,在等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等

已知数列{an}的通项公式为an=3n-1,在等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等

题型:不详难度:来源:
已知数列{an}的通项公式为an=3n-1,在等差数列{bn}中,bn>0(n∈N*),且b1b2b3=15,又a1b1a2b2a3b3成等比数列.
(1)求数列{bn}的通项公式;
(2)求数列{an·bn}的前n项和Tn.
答案
(1)bn=2n+1(2)Tnn·3n.
解析
(1)∵an=3n-1(n∈N*),∴a1=1,a2=3,a3=9,在等差数列{bn}中,∵b1b2b3=15,∴b2=5,又a1b1a2b2a3b3成等比数列.
设等差数列{bn}的公差为d.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
bn>0(n∈N*),∴舍去d=-10,取d=2,
b1=3,∴bn=2n+1.
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)·3n-2+(2n+1)·3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n,②
①-②得:-2Tn=3×1+2×3+2×32+…+2×3n-1-(2n+1)·3n=3+2(3+32+33+…+3n-1)-(2n+1)·3n=3+2×-(2n+1)·3n=3n-(2n+1)·3n=-2n·3n.∴Tnn·3n.
举一反三
已知数列{an}满足a1=3,an+1anp·3n(n∈N*p为常数),a1a2+6,a3成等差数列.
(1)求p的值及数列{an}的通项公式;
(2)设数列{bn}满足bn,证明:bn.
题型:不详难度:| 查看答案
设数列{an}的前n项和为Sna1=1,且对任意正整数n,点(an+1Sn)在直线3x+2y-3=0上.
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,则说明理由.
题型:不详难度:| 查看答案
已知数列满足:,则__________.
题型:不详难度:| 查看答案
已知数列的前项和为,数列满足:
(1)求数列的通项公式
(2)求数列的通项公式;(3)若,求数列的前项和.
题型:不详难度:| 查看答案
等差数列的公差,前项和为,则对正整数,下列四个结论中:
(1)成等差数列,也可能成等比数列;
(2)成等差数列,但不可能成等比数列;
(3)可能成等比数列,但不可能成等差数列;
(4)不可能成等比数列,也不可能成等差数列;
正确的是(  )
A.(1)(3).B.(1)(4).C.(2)(3).D.(2)(4).

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.