数列、的每一项都是正数,,,且、、成等差数列,、、成等比数列,.(Ⅰ)求、的值;(Ⅱ)求数列、的通项公式;(Ⅲ)记,证明:对一切正整数,有.

数列、的每一项都是正数,,,且、、成等差数列,、、成等比数列,.(Ⅰ)求、的值;(Ⅱ)求数列、的通项公式;(Ⅲ)记,证明:对一切正整数,有.

题型:不详难度:来源:
数列的每一项都是正数,,,且成等差数列,成等比数列,.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,证明:对一切正整数,有.
答案
(Ⅰ);(Ⅱ);(Ⅲ)答案详见解析.
解析

试题分析:(Ⅰ)依题意,,并结合已知,利用赋值法可求的值;(Ⅱ)由①,②,且,则),代入①中,得关于的递推公式,故可判断数列是等差数列,从而可求出,代入)中,求出),再检验时,是否满足,从而求出;(Ⅲ)和式表示数列的前项和,故先求通项公式,再选择相应的求和方法求和,再证明和小于.
试题解析:(Ⅰ)由,可得.由,可得.
(Ⅱ)因为成等差数列,所以…①.因为成等比数列,所以,因为数列的每一项都是正数,所以…②.于是当…③.  将②、③代入①式,可得,因此数列是首项为4,公差为2的等差数列,
所以,于是.   则.
时,,满足该式子,所以对一切正整数,都有.
(Ⅲ)方法一:,所以.
于是
.
方法二:.
于是
.
举一反三
已知数列中,,且,则的值为   .
题型:不详难度:| 查看答案
数列满足.
(1)若是等差数列,求证:为等差数列;
(2)若,求数列的前项和.
题型:不详难度:| 查看答案
已知数列为等差数列,若,则          .
题型:不详难度:| 查看答案
已知数列为等差数列,若,则(      )
A.36B.42C.45D.63

题型:不详难度:| 查看答案
设等差数列的前项和为,已知.
(1)求
(2)若从中抽取一个公比为的等比数列,其中,且.
①当取最小值时,求的通项公式;
②若关于的不等式有解,试求的值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.