设数列{an}的前n项和为Sn,且,n=1,2,3 (1)求a1,a2;(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•

设数列{an}的前n项和为Sn,且,n=1,2,3 (1)求a1,a2;(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;(3)求S1•S2•

题型:不详难度:来源:
设数列{an}的前n项和为Sn,且,n=1,2,3
(1)求a1,a2
(2)求Sn与Sn﹣1(n≥2)的关系式,并证明数列{}是等差数列;
(3)求S1•S2•S3 S2011•S2012的值.
答案
(1);(2)SnSn﹣1﹣2Sn+1=0;(3)
解析

试题分析:(1)直接利用的关系式求的值;(2)当时,把代入已知关系式可得与的关系式,再由此关系式,去凑出,可得所求数列是等差数列,进而得通项的表达式,从而得的表达式;(3)由(2)中的表达式易求S1•S2•S3 S2011•S2012的值.
试题解析:(1)解:当n=1时,由已知得,解得
同理,可解得 .                  (4分)
(2)证明:由题设
当n≥2时,an=Sn﹣Sn﹣1,代入上式,得SnSn﹣1﹣2Sn+1=0,
,       (7分)
=﹣1+
∴{}是首项为=﹣2,公差为﹣1的等差数列,        (10分)
=﹣2+(n﹣1)•(﹣1)=﹣n﹣1,∴Sn= .    (12分)
(3)解:S1•S2•S3 S2011•S2012= •=.    (14分)
举一反三
在等差数列中,若,则                
题型:不详难度:| 查看答案
已知数列中,,前
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
题型:不详难度:| 查看答案
在等差数列中,若,则                
题型:不详难度:| 查看答案
已知数列{}是公差为3的等差数列,且成等比数列,则等于(     )
A.30B.27C.24D.33

题型:不详难度:| 查看答案
已知数列{}的前n项和为,且,则使不等式成立的n的最大值为           
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.