(1)因为=(1,2),=(an,an+1),∥, 所以an+1=2an,数列{an}是等比数列,公比为2, 又a2+1是a1与a3的等差中项, 2(a2+1)=a1+a3,即2(2a1+1)=5a1, 解得a1=2, 数列{an}的通项公式an=2•2n-1=2n; (2)数列{an}的前n项的和为Sn==2n+1-2, 数列{bn}满足bn=anlog2(sn+2)=2nlog2(2n+1-2+2)=2n•(n+1), Tn=2×21+3×22+4×23+…+(n+1)•2n…①, ①×2得2Tn=2×22+3×23+4×24+…+(n+1)•2n+1…②, ①-②得,-Tn=2×21+22+23+…+2n-(n+1)•2n+1 =2-(n+1)•2n+1+ =2-(n+1)•2n+1+2n+1-2 =-n•2n+1, 数列{bn}的前n项的和Tn=n•2n+1. |