在等差数列{an} 中,若a1003+a1004+a1006+a1007=4,则该数列的前2009项的和是______.
题型:不详难度:来源:
在等差数列{an} 中,若a1003+a1004+a1006+a1007=4,则该数列的前2009项的和是______. |
答案
∵等差数列{an} 中,若a1003+a1004+a1006+a1007=4, ∴a1004+a1006=2 ∴a1+a2009=2, ∴s2009==2009 故答案为:2009 |
举一反三
设数列{an}是等差数列,a5=6 (1)当a3=3时,在数列{an}中找一项am,使a3,a5,am成等比数列,求m的值; (2)当a3=2时,若自然数nt(t=1,2,3,…),满足5<n1<n2<…<nt<…,且使得a3,a5,an1,an2…,ant…成等比数列,求数列{nt}的表达式. |
设等比数列{an}的前n项和为Sn,已知an+1=2Sn+2(n∈N*). (1)求数列{an}的通项公式; (2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由; (3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由. |
如果有穷数列a1、a2、a3、…、an(n为正整数)满足条件a1=an,a2=an-1,…,an=a1,即ak=an-k+1(k=1,2 …,n),我们称其为“对称数列”.设{bn}是项数为7的“对称数列”,其中b1、b2、b3、b4成等差数列,且b1=2,b2+b4=16,依次写出{bn}的每一项______. |
已知等差数列{an}满足a2=3,an-1=17,(n≥2),Sn=100,则n的值为( ) |
等差数列{an}中,a1、a2、a3分别是下表第一、二、三列中的某个数,且a1、a2、a3中的任何两个数不在下表的同一行. | 第一列 | 第二列 | 第三列 | 第一行 | 0 | 2 | -1 | 第二行 | 2 | 0 | 5 | 第三行 | 1 | 3 | -3 |
最新试题
热门考点
|