已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,1Sn=1an-1an+1.(1)求证:数列Sn是等比数列;(

已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,1Sn=1an-1an+1.(1)求证:数列Sn是等比数列;(

题型:江苏模拟难度:来源:
已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,
1
Sn
=
1
an
-
1
an+1

(1)求证:数列Sn是等比数列;
(2)设an与an+2的等差中项为A,比较A与an+1的大小;
(3)设m是给定的正整数,a=2.现按如下方法构造项数为2m有穷数列bn:当k=m+1,m+2,…,2m时,bk=ak•ak+1;当k=1,2,…,m时,bk=b2m-k+1.求数列bn的前n项和为Tn(n≤2m,n∈N*).
答案
(1)当n≥3时,
1
Sn
=
1
an
-
1
an+1
=
1
Sn-Sn-1
-
1
Sn+1-SN

化简得Sn2=Sn-1Sn+1(n≥3),又由a1=1,a2=a-1得
1
a
=
1
a-1
-
1
a3

解得a3=a(a-1),∴S1=1,S2=a,S3=a2,也满足Sn2=Sn-1Sn+1,而Sn恒为正值,
∴数列{Sn}是等比数列.(4分)
(2)Sn的首项为1,公比为a,Sn=an-1
当n≥2时,an=Sn-Sn-1=(a-1)an-2
∴an=





1   n=1
(a-1) an-2,n≥2

当n=1时,A-an+1=
a1+a3
2
-a2=
a2-3a+3
2
=
1
2
[(a-
3
2
)2+
3
4
]≥
3
8
,此时A>an+1.(6分)
当n≥2时,A-an+1=
an+an+2
2
-an+1=
(a-1)an-2+(a-1)an
2
-(a-1)an-1
=
(a-1)an-2(a2-2a+1)
2
=
(a-1)3an-2
2

∵Sn恒为正值∴a>0且a≠1,
若0<a<1,则A-an+1<0,若a>1,则A-an+1>0.
综上可得,当n=1时,A>an+1
当n≥2时,若0<a<1,则A<an+1
若a>1,则A>an+1.(10分)
(3)∵a=2∴an=





1   n=1
  2n-2,n≥2
,当m+1≤k≤2m时,bk=ak•ak+1=22k-3
若n≤m,n∈N*,则由题设得b1=b2m,b2=b2m-1,bn=b2m-n+1
Tn=b1+b2+…+bn=b2m+b2m-1+…+b2m-n+1
=24m-3+24m-5++24m-2n-1=
24m-3(1-4-n)
1-4-1
=
24m-1(1-2-2n)
3
.(13分)
若m+1≤n≤2m,n∈N*,则Tn=bm+bm+1+bm+2+…+bn=
24m-1(1-2-2m)
3
+22m-1+22m+1++22n-3

=
24m-1(1-2-2m)
3
+
22m-1(1-4n-m)
1-4
=
22m-1(22m-1)
3

综上得Tn=





24m-1(1-2-2n)
3
,1≤n≤m
22m-1(22m-1)
3
,m+1≤n≤2m
.(16分)
举一反三
在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则S13=(  )
A.156B.52C.26D.13
题型:不详难度:| 查看答案
已知数列an是首项为1,公比为q(q>0)的等比数列,并且2a1
1
2
a3a2
成等差数列.
(I)求q的值
(II)若数列bn满足bn=an+n,求数列bn的前n项和Tn
题型:不详难度:| 查看答案
若{an}为等差数列,Sn是其前n项和.且S11=
22π
3
,则tana6=______.
题型:蓝山县模拟难度:| 查看答案
设数列{an}满足:Sn=
an2
4
+n
,an>0.
(1)求{an}的表达式;
(2)将数列{an}依次按1项,2项,3项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b2010的值;
(3)如果将数列{an}依次按1项,2项,3项,…,m(m≥3)项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
题型:不详难度:| 查看答案
已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
题型:蓝山县模拟难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.