已知等差数列{an}和等比数列{bn}满足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,则a5+b5=______.
题型:不详难度:来源:
已知等差数列{an}和等比数列{bn}满足:a1+b1=3,a2+b2=7,a3+b3=15,a4+b4=35,则a5+b5=______. |
答案
∵a1+b1=3,① a2+b2=a1+d+b1q=7,② a3+b3=a1+2d+b1q2=15,③ a4+b4=a1+3d+b1q3=35④ ②-①可得,4-d=b1(q-1) ③-②可得,8-d=b1q(q-1) ④-③可得,20-d=b1q2(q-1) ∴=,= ∴= 解方程可求d=2,q=3,b1=1,a1=2 ∴a5+b5=10+81=91 故答案为:91 |
举一反三
已知数列{an}是等差数列,且a3=5,a5=9,Sn是数列{an}的前n项和. (1)求数列{an}的通项公式an及前n项和Sn; (2)若数列{bn}满足bn=,且Tn是数列{bn}的前n项和,求bn与Tn. |
(文) {an}中,a1=1,an+1=an+1,b1=1,(bn,bn+1)在直线x-y+2=0上.求:an,bn. |
(理)数列{an}满足a1=1 且8an+1an-16an+1+2an+5=0(n≥1)记bn=(n≥1) (1)求b1,b2,b3,b4的值. (2)求{bn}、{anbn}的通项公式. (3)求{anbn}的前n项和Sn. |
等差数列{an}中,a2=8,S6=66 (1)求数列{an}的通项公式an; (2)设bn=,Tn=b1+b2+b3+…+bn,求Tn. |
已知等差数列{an}和正项等比数列{bn},a1=b1=1,a3+a7=10,b3=a4 (1)求数列{an}、{bn}的通项公式 (2)若cn=an•bn,求数列{cn}的前n项和Tn. |
最新试题
热门考点