(1)令n=1,2,3,根据求出 (2)根据,得到,两式相减可得 ,所以,问题到此基本得以解决. (3)在(2)的基础上,求出的通项公式,再根据通项公式的特点选用合适的数列求和的方法求和即可. 解:(1)由题意,当n=1时,得2a1=a1+3,解得a1=3 当n=2时,得2a2=(a1+a2)+5,解得a2="8" 当n=3时,得2a3=(a1+a2+a3)+7,解得a3="18" 所以a1=3,a2=8,a3=18为所求.·························· 3分 (2)因为2an=Sn+2n+1,所以有2an+1=Sn+1+2n+3成立 两式相减得:2an+1-2an=an+1+2 所以an+1=2an+2(nN*),即an+1+2=2(an+2) 所以数列{an+2}是以a1+2=5为首项,公比为2的等比数列·············· 7分 (3)由(2)得:an+2=5×2n-1,即an=5×2n-1-2(nN*) 则nan=5n·2n-1-2n(nN*)··························· 8分 设数列{5n·2n-1}的前n项和为Pn, 则Pn=5×1×20+5×2×21+5×3×22+…+5×(n-1)·2n-2+5×n·2n-1,········· 10分 所以2Pn=5×2×21+5×3×22+5×3×23+…+5(n-1)·2n-1+5×n·2n, 所以-Pn=5(1+21+22+…+2n-1)-5n·2n, 即Pn=(5n-5)·2n+5(nN*)·························· 12分 所以数列{n·an}的前n项和Tn=(5n-5)·2n+5-2×, 整理得,Tn=(5n-5)·2n-n2-n+5(nN*) 13分 |