已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=3+(-1)n-12,n∈N*,且a1=2.(Ⅰ)求a2,a3的值;(Ⅱ)设cn

已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=3+(-1)n-12,n∈N*,且a1=2.(Ⅰ)求a2,a3的值;(Ⅱ)设cn

题型:不详难度:来源:
已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=
3+(-1)n-1
2
,n∈N*,且a1=2

(Ⅰ)求a2,a3的值;
(Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列.
答案
(Ⅰ)由bn=
3+(-1)n-1
2
,n∈N*
,可得bn=





2,n为奇数
1,n为偶数

又因为bn+1an+bnan+1=(-2)n+1,
n=1时,a1+2a2=-1,由a1=2,可得a2=-
3
2

当n=2时,2a2+a3=5,可得a3=8.
(Ⅱ)证明:对任意n∈N*都有:a2n-1+2a2n=-22n-1+1…①
并且有:2a2n+a2n+1=22n+1…②
②-①,得a2n+1-a2n-1=3×22n-1,即cn=3×22n-1
于是
cn+1
cn
=4

所以{cn}是等比数列.
举一反三
已知公差不为0的等差数列{an}的首项a1(a1∈R),且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
1
a2
+
1
a22
+
1
a23
+…+
1
a2n
1
a1
的大小.
题型:浙江难度:| 查看答案
设{an}为递减等比数列,a1+a2=11,a1•a2=10,lga1+lga2+lga3+…+lga10=(  )
A.-35B.35C.-55D.55
题型:江门一模难度:| 查看答案
已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4成等差数列.
(I)证明12S3,S6,S12-S6成等比数列;
(II)求和Tn=a1+2a4+3a7+…+na3n-2
题型:湖南难度:| 查看答案
椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为(  )
A.
1
4
B.


5
5
C.
1
2
D.


5
-2
题型:江西难度:| 查看答案
设f(x)=ax+b,a≠0,Sn=f(1)+f(2)+f(3)+…+f(n),若f(3)=5,且f(1),f(2),f(5)成等比数列,求Sn
题型:汕头二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.