数列an=log2n+1n+2(n∈N*),设其前n项和为Sn,则使Sn<-5成立的自然数n(  )A.有最小值63B.有最大值63C.有最小值31D.有最大值

数列an=log2n+1n+2(n∈N*),设其前n项和为Sn,则使Sn<-5成立的自然数n(  )A.有最小值63B.有最大值63C.有最小值31D.有最大值

题型:不详难度:来源:
数列an=log2
n+1
n+2
(n∈N*)
,设其前n项和为Sn,则使Sn<-5成立的自然数n(  )
A.有最小值63B.有最大值63C.有最小值31D.有最大值31
答案
由题意可知;an=log2
n+1
n+2
(n∈N*),
设{an}的前n项和为Sn=log2
2
3
+log2
3
4
+…+log2
n
n+1
+log2
n+1
n+2

=[log22-log23]+[log23-log24]+…+[log2n-log2(n+1)]+[log2(n+1)-log2(n+2)]
=[log22-log2(n+2)]=log2
2
n+2
<-5,
2
n+2
<2-5
解得n+2>64,
n>62;
∴使Sn<-5成立的自然数n有最小值为63.
故选:A.
举一反三
数列{an}中,a1=1,且点(an,an+1)在直线l:2x-y+1=0上.
(Ⅰ)设bn=an+1,求证:{bn}是等比数列;
(Ⅱ)设Cn=n(3an+2),求{Cn}的前n项和.
题型:不详难度:| 查看答案
已知数列{an}(n∈N*),首项a1=
5
6
,若二次方程anx2-an+1x-1=0的根α、β且满足3α+αβ+3β=1,则数列{an}的前n项和Sn=______.
题型:浦东新区二模难度:| 查看答案
已知函数f(x)的定义域为N*,且f(x+1)=f(x)+x,f(1)=0.
(1)求f(x)的解析式.
(2)设an=
1
f(n)
.(n∈N*,n≥2),Sn=a2+a3+a 3+…+an
,问是否存在最大的正整数m,使得对任意的n∈N*均有Sn
m
2012
恒成立?若存在,求出m值;若不存在请说明理由.
题型:不详难度:| 查看答案
已知正项数列{an}中,a1=1,点(


an
an+1),(n∈N*)
在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)已知bn=(
1
2
)n-1,n∈N*
,令Cn=
-1
an+1log2bn+1
,求{Cn}的前n项和Tn
题型:不详难度:| 查看答案
在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4
(Ⅰ)设Sn为数列{an}的前n项和,求anbn和Sn
(Ⅱ)设Cn=
anbn
Sn+1
(n∈N*),Rn=C1+C2+…+Cn,求Rn
题型:杭州二模难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.