在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).(1)求数列{an}的通项公式;(2)若bn=log2an,1b3

在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).(1)求数列{an}的通项公式;(2)若bn=log2an,1b3

题型:不详难度:来源:
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an
1
b3b4
+
1
b4b5
+…+
1
bnbn+1
<m
对于任意的n∈N*,且n≥3恒成立,求m的取值范围.
答案
(1)∵an=an-1+an-2+…+a2+a1(n∈N*,n≥2),
∴Sn-Sn-1=Sn-1,∴
Sn
Sn-1
=2

∴数列{Sn}是以S1=a1=1为首项,以2为公比的等比数列,
∴Sn=2n-1.当n≥2时,an=Sn-Sn-1=2n-1-2n-2=2n-2
∵a1=1不适合上式,
∴数列的通项公式为an=





1(n=1)
2n-2(n≥2).

(2)当n∈N*,且n≥3时,bn=n-2,
1
bnbn+1
=
1
(n-2)(n-1)
=
1
n-2
-
1
n-1

1
b3b4
+
1
b4b5
+…+
1
bnbn+1
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-2
-
1
n-1
)=1-
1
n-1
<m
恒成立,
∴m≥1.
举一反三
已知数列{an}的前n项和为Sn,且Sn=2-
n+2
n
an(n∈N*)

(I)求证:
an+1
an
=
n+1
2n

(II)求an及Sn
(III)求证:
a21
+
a22
+
a23
+…+
a2n
49
64
题型:不详难度:| 查看答案
已知函数f(x)=
7x+5
x+1
,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1)
(1)求证:数列{
1
an
}
是等差数列;(2)求数列{|bn|}的前n项和Tn
(3)是否存在自然数n,使得(2)中的Tn∈(480,510).若存在,求出所有的n;若不存在,请说明理由.
题型:不详难度:| 查看答案
数列{an}的通项an=n2(cos2
3
-sin2
3
)
,其前n项和为Sn
(1)求Sn
(2)bn=
S3n
n•4n
,求数列{bn}的前n项和Tn
题型:江西难度:| 查看答案
数列{an}中,a1=1,Sn是{an}的前n项和,且Sn+1=Sn+n,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
1
Sn+1-1
,求数列{bn}的通项公式;
(III)若cn=n•2an+1,求数列{cn}的前n项和Tn
题型:门头沟区一模难度:| 查看答案
设数列满足a1=2,an+1-an=3•22n-1
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列的前n项和Sn
题型:宁夏难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.